Sinterleme Yöntemiyle Apatit – Wollastonit Cam Seramik Üretimi

Bu çalışmada, apatit - wollastonit cam-seramik üretilmiş ve karakterizasyon çalışmaları gerçekleştirilmiştir. AW cam seramik üretimi için CaO, SiO2, P2O5, MgO, Al2O3 ve CaF2 bileşikleri kullanılmış ve ağırlıkça oranları hesaplanarak toz kompozisyonu hazırlanmıştır. Hazırlanan karışım yaklaşık 14000C’nin üzerinde 1 saat boyunca alümina pota içerinde ergitilmiştir. Camlaşmış ergiyiğin amorf yapısını oda sıcaklığında korumak için aşırı soğuma şartlarında (suya dökülerek) kritik soğuma hızının üzerine çıkılarak soğutulmuştur. Elde edilen frit tozları öğütülüp kalıpta şekillendirilerek peletler üretilmiş ve 10000C’nin üzerinde sinterlenerek hem kristalize yapı elde edilmiş hem de istenilen formda bulk malzeme elde edilmiştir. Ürünlerin kimyasal içeriğini belirlemek amacıyla X-ışını floresans spektrometre (XRF) analizi yapılmıştır. Ayrıca numunelerin mikroyapı incelemesi için taramalı elektron mikroskobu (SEM) ve boyutsal değişimlerinin belirlenmesi için dilatometre analizi gerçekleştirilmiştir. Nihai ürünün faz içeriğinin belirlenmesi için X-ışını Kırınım analizi (XRD) gerçekleştirilerek yapıda oluşan kristalin fazlar ve amorf fazlar tespit edilmiştir. Üretimi gerçekleştirilen AW tozlarının ve bulk malzemenin kimyasal içeriklerinin ve mikroyapılarının literatür ve referans ürünlerle uyumlu olduğu ortaya konulmuştur. Yapılan SEM analizi ile mikroyapının çok düşük miktarda poroziteye sahip olduğu tespit edilmiştir.

Apatite - Wollastonite Glass Ceramic Production by Sintering Method

In this study Apatite - wollastonite glass - ceramic production was made and characterization studies were carried out. For the production of A-W glass ceramics, CaO, SiO2, P2O5, MgO, Al2O3 and CaF2 compounds were used and powder composition was prepared by calculating the weight ratios. The mixture was melted in an alumina crucible for 1 hour at a temperature above 1400°C. To maintain the amorphous structure of the glass melt at room temperature, it was cooled over critical cooling rate by pouring into water. The resulting frit powders were ball milled and pressed into a steel die to produce pellets. After all, the pellets were sintered above 1000°C to obtain a stiff bulk material with crystalline structure as desired. X-ray fluorescence spectrometry (XRF) analysis was performed to determine the chemical composition of the product. In addition, scanning electron microscopy (SEM) was used for the microstructure analysis of the samples and dilatometer analysis was carried out to find dimensional expansion or shrinkage value. To detect the phase content of the final product, X-ray diffraction analysis (XRD) was performed to determine the main phases and secondary phases formed in the structure. The final bulk materials had the chemical composition and microstructure of A-W when compared with previous works (reference products). SEM analysis revealed that the microstructure had very low porosity level.

___

  • [1]. Williams, D.F., “Definitions in biomaterials”, Progress in Biomedical Engineering, Elsevier, Amsterdam, 1987.
  • [2]. Hench, L.L., West, J.K., “The sol-gel process”, Chem. Rev. 90 (1990) 33–72. - Hench, L.L, Wilson, J., “Introduction to Bioceramics”, World Scientific, Singapore, 1993.
  • [3]. [Hench, L.L., “Biomaterials: a forecast for the future”, Biomaterials 19, 1419–1423, 1991.
  • [4]. ALBREKTSSON, T., “Osteoinduction, osteoconduction and osseointegration”, Euro. Spine Journal 10 S96–101, 2001.
  • [5]. KAUR, G., “Mechanical properties of bioactive glasses, ceramics, glass-ceramics and composites: State-of-the-art review and future challenges”, Materials Science & Engineering C 104, 109895, 2019.
  • [6]. Thompson, I.D., Hench, L.L., “Mechanical properties of bioactive glasses, glass-ceramics and composites”, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 212: 127, 1998.
  • [7]. KOKUBO, T., SHIGEMATZU, T., “ApatiteWollastonite Containing Glass Ceramics for Prosthetic Application”, Bull. Inst. Chem. Res., Kyoto Univ., Vol.60, No. 3-4, 1982.
  • [8]. Cannillo, V., Pierli, F., Sampath, S., Siligardi, C., “Thermal and physical characterisation of apatite/wollastonite bioactive glass–ceramics”, Journal of the European Ceramic Society 29 (2009) 611–619.
  • [9]. Ratner, B. D., Hoffman, A. S., Schoen, F. J. and Lemons, J. E., Biomaterials science. An Introduction to Materials in Medicine. Elsevier Academic Press, 2004.
  • [10]. R.Tejido-Rastilla, G.Baldi, A.R. Boccaccini’’ Ag containing polydopamine coating on a melt-derived bioactive glass-ceramic: Effect on surface reactivity’’Ceramic İnternationals, 44-13, 2018.
  • [11]. Timuçin, M. Öztürk, A. Korkusuz, F. et al., Apatit – Wollastonit Biyoaktif Seramiklerin Üretimi ve Karakterizasyonu, Proje No: 104M400, Ortadoğu Teknik Üniversitesi, Ankara, Mayıs 2008.
  • [12]. Likitvanichkul and W.C.lacourse Apatite-Wolastonite glass-ceramics, J. of Materials Scienc, 33 - 5901-5904, 1998.
  • [13]. Chawla, K.K., ‘’Ceramic Matris Composites, Kluwer Academic Publishers’’, USA, 2003.
  • [14]. Murugan, K., and Ramakrishna, S., ‘’Development of Nanocomposites for Bone Grafting Composites Science and Technology’’, 2385-2406, 2005.
ACADEMIC PLATFORM-JOURNAL OF ENGINEERING AND SCIENCE-Cover
  • ISSN: 2147-4575
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2013
  • Yayıncı: Akademik Perspektif Derneği