Genetiği Değiştirilmiş Organizmaların (GDO) Entomoloji Alanındaki Uygulama Olanakları

Tarımsal üretimde ekonomik kayıplara neden olan önemli etmenlerden birisi böceklerdir. Son yıllarda tarımsal zararlılarla mücadelede kullanılan insektisitlerin insan, çevre ve doğal denge üzerindeki olumsuz etkilerinin artması nedeniyle, ilaçlara alternatif savaşım yöntemleri üzerindeki çalışmalar önem kazanmıştır. Moleküler biyoloji tekniklerinin hızla gelişmesiyle, araştırmalar gen aktarma yöntemi kullanılarak yeni özellikler kazandırılmış böceklere dayanıklı transgenik bitkiler ve direkt gen aktarımı yapılmış böcekler üzerinde yoğunlaşmıştır. Bu çalışmada böceklere dayanıklı transgenik bitkilerin geliştirilmesi, böceklere gen aktarım sistemleri ve entomolojideki kullanım olanakları hakkında bilgi verilmiştir.

The Application Facilities of the Genetically Modified Organism (GMO) in Entomology

One of the important factors that causes to economic losses in agricultural production is insects. Because the negative effects of the insecticides that have been recently used in the control for agricultural pest on human beings, environment and natural balance have increased, the control methods that are alternatives to pesticides have gained importance. With the rapid improvement of molecular biology tecniques, researchs have been concentrated on transgenic plants that are resistant to the insect having been acquired new properties by using the technique of gene transfer and the insects whose genes have been directly transfered. In this study, the information about the improvement of transgenic plants that are resistant to insects and the usage facilities in entomology is given.

___

  • Atkinson, W., P., 2002. Genetic engineering in insect of agricultural important. Insect Biochemistry and Molecular Biology, 32: 1237-1242.
  • Barton, KA., Whitely, HR., Yang, NS., 1987. Bacillus thuringiensis &-endotoksin expressed in transgenic Nicotiana tabacum provides resistance to Lepidopteran insects. Plant Physiol., 85: 1103-1109.
  • Demir, A., Seyis, F., Kurt, O., 2006. Genetik Yapısı Değiştirilmiş Organizmalar: I. Bitkiler. OMÜ. ZİR. Fak. Dergisi, 21(2): 249-260.
  • Dutton, A., Romeis, J., Bigler, F., 2003. Assessing the risk of insect resistanttransgenic plants on entomophagous arthropod: Bt-maize expressing Cry1Ab as a case study. 48:611-636.
  • Fischhoff, DA., Bowdish,, KS., Perlak, FJ., 1987. Insect tolerant transgenic tomato plants. Bio/ Technology, 5: 807-813.
  • Gill, SS., Cowles, EA., Pietrantonio, PV., 1992. The mode of action of Bacillus thuringiensis endotoksins. Ann. Rev. Entomol., 37: 615-636.
  • Gould, F., Anderson, A., Jones, A., Sumerford, D., Heckel, D., G., Lopez, J., Micinski, S., Leonard, R., and Laster, M., 1997. Initial frequency of alleles for resistance to Bacillus thuringiensis toxins in field populations of Heliothis virescens. Proc. Natl. Acad. Sci. U. S. A. 94 (1997), pp. 3519–3523.
  • Halis, R., S., 1999. Genetically modified plants – the debate continue. Trends in Ecology & Evolution, 15(1):14-18
  • Handler, A., M., 2001. A current perspective on insect gene transformation. Insect Biochemistry and Molecular Biology, 31: 111-128.
  • Heinrich, C. and Scott, J., M., 2000. A repressible female-specific lethal genetic system for making transgenic insect strains suitabe for a sterile-release program. Applied Biological Science, 97: 8229-8232.
  • Horn, C. and Wimmer, EA., 2003. A transgene-based, embryo-specific lethality system for insect pest management. Nature Biotechnology, 21:64-70.
  • Houdebine, L., M., 2000. Transgenic animal bioreactors. Transgenic Research. 9:305-320.
  • Ibelgafts, H., 1993. Gentechnologie von A-Z. Studienausgabe. VCH Verlag.
  • Knowles, BH., Dow, JAT., 1993. The crystal endotoxins of Bacillus thuringiensis models for their mechanisms of action on the insect gut. BioEssay, 15: 469-476.
  • Loukeris, T., G., Livadaras, I., Arca, B., Zabalou, S. and Savakis, C., 1995. Gene transfer into the medfly, Ceratitis capitata, with a Drosophila hydei transposable element. Science, 270(5244):1941-2.
  • Marshall, G., 1998. Herbicide tolerant crops –real farmer opportunity or potential environmental problem?. Pestic. Sci. 52: 394–402.
  • Mallet, J. and Porter, P., 1992. Preventing insect adaptation to insect-resistant crops: are seed mixtures or refugia the best strategy?. Proc. R. Soc. London Ser. B 250 :165–169.
  • O’Brochta, D., A. and Atkinson, P., W., 2001. Transgenic Insects: Programs, Technology, Benefits and Risks. LMOs and the Environment: An International Conference, Raleigh-Durham, the United States, 27-30 November.
  • Özgen, M., Ertunç, F., Kınacı, G., Yıldız, M., Birsin, M., Ulukan, H., Emiroğlu, H., Koyuncu, N., Sancak, C., 2005. Tarım Teknolojilerinde Yeni Yaklaşımlar ve Uygulamalar: Bitki Biyoteknolojisi. Türkiye Ziraat Mühendisliği VI. Teknik Kongresi, 3-7 Ocak, 315-345.
  • Phipps, R., H. and Park, J., R., 2002. Environmental benefits of geneticallly modified crops: Global and European perspectives on their ability to reduce pesticide use. J. Of Animal and Feed Sciences, 11:1-8.
  • Robinson, A., S., Franz, G. and Atkinson, P., W., 2004. Insect transgenesis and its potential role in agriculture and human health. Insect Biochemistry and Molecular Biology. 34(2):113-120.
  • Tomita, M., T., Munetsuna, H., Sato, T., Adachi, T., Hino, R., Hayashi, M., Shimizu, K., Nakamura, N., Tamura, T. and Yooshizato, K., 2003. Transgenic silkworms produce recombinant human type III procollagen in cocoons. Nature biotecnology, 21:5256
  • Turanli, F., ve S., Kismali, 2004. Gen Aktarımı Teknolojisinin Entomolojideki Uygulamaları.Tarım ve Mühendislik. Sayi 68.
  • Vaeck, M., Reynaerts, A., Höfte, H., 1987. Transgenic plants protected from insect attact. Nature, 327: 33-37.
  • Wimmer, E., A., 2003. Aplications of insect transgenesis. Nature Reviews, 4:225-232.