Melezleme ile Elde Edilen Elma Genotiplerinde Meyve Kalitesinin Değerlendirilmesi

Bu çalışma ile Eğirdir Meyvecilik Araştırma İstasyonu’nda yürütülen elma çeşit ıslah programına ait melez popülasyonunda bulunan genotiplerin meyve kalite özellikleri incelenmiştir. Çalışmada görünüm ve yeme kalitesi gibi daha çok tüketici özellikleri göz önünde tutulmuş ve meyve kalitesi uzman panelistler tarafından duyusal analizlerle belirlenmiştir. Faktör analizindeki temel bileşen grupları esas alınarak yapılan çoklu karşılaştırma testinde 5 genotipin (‘91’, ‘109’, ‘177’, ‘63’, ‘120’) (‘Kaşel 37’ x ‘Delbarestivale’) hem referans olarak alınan ‘Amasya’ elmasından, hem de ebeveynlerinden daha üstün olduğu tespit edilmiştir. Bununla birlikte ‘368’ nolu tip (‘Kaşel 41’ x ‘Williams’ Pride’) nispeten daha düşük puanlar almasına karşın o dönem olgunlaşan çeşitlere kıyasla yeme kalitesinin yüksek olması ve erkencilik özelliğinden dolayı bölgesel olarak değerlendirilebilirliği sebebiyle seçilen tipler arasında yer almıştır. Böylece seleksiyonun ilk aşaması tamamlanmış ve 70 genotip içerisinden 6 genotipin (‘91’, ‘109’, ‘177’, ‘63’, ‘120’ ve ‘368’) hem görünüm, hem de diğer yeme kalite kriterleri bakımından diğerlerine kıyasla daha üstün olduğu belirlenmiştir.

Fruit Quality Assessment in Apple Genotypes Obtained by Crossing

In this study, fruit quality attributes were evaluated in hybrid populations of apple breeding program conducted at Eğirdir Fruit Research Station. Consumer properties such as appearance and eating quality were considered, and fruit quality was determined by sensory analysis by expert panelists. The five genotypes (‘91’, ‘109’, ‘177’, ‘63’, ‘120’) (‘Kaşel 37’ x ‘Delbarestivale’) were superior than both parents and ‘Amasya’ apples taken as a reference in multiple comparison test performed based on principal component groups in factor analysis. However, The type ‘368’ (‘Kaşel 41’ X ‘Williams' Pride’) took place among selected type due to it can be evaluated regionally because of early maturation, and the eating quality is much higher than maturing varieties in that period despite the fact that relatively lower scores. The first stage of selection of genotypes was completed with the essay, and 6 types (‘91’, ‘109’, ‘177’, ‘63’, ‘120’ and ‘368’) among 70 genotypes have been found to be much superior in terms of both appearance and others eating quality criteria.

___

  • Anonymous (2012). RosBREED Apple Phenotyping Protocol. http://www.rosbreed.org/node/132 (Erişim tarihi: 10.05.2012).
  • Barreiro P. Ortiz C, Ruiz-Altisent M, De Smedt V, Schotte S, Andani Z, Wakeling I, Beyts P (1998). Comparison between sensory and instrumental measurements for mealiness assessment in apples. A collaborative test. J. Texture Stud. 29: 509-525.
  • Barritt BH (2001). Apple quality for consumers. Compact Fruit Tree 34: 54-56.
  • Bourne MC (1979). Fruit texture-an overview of trends and problems. Journal of Texture Studies 10: 839
  • Cramond G (2010). Apple Botany and History. www.apfip.com.au/news/.../Apple%20Botany%20and %20History%202.pdf (Erişim tarihi: 10.05.2012).
  • Dixon J, Hewett EW (2000). Factors affecting apple aroma/flavour volatile concentration: a review. New Zealand Journal of Crop and Horticultural Science 28: 155-173.
  • Echeverría G, Graell J, Lara I, López ML, Puy J (2008). Panel consonance in the sensory evaluation of apple attributes: influence of mealiness on sweetness perception. Journal of Sensory Studies, 23: 656-670.
  • Evans KM, Hanrahan I, Auvil T (2011). WSU’s apple breeding program’s fruit evaluation system. Good Fruit Grower 62(12):30-31.
  • Gatti E, Di Virgilio N, Magli M, Predieri S (2011). Integrating sensory analysis and hedonic evaluation for apple quality assessment. Journal of Food Quality 34: 126-132.
  • Gessler C, Patocchi A (2007). Recombinant DNA technology in apple. Advanced in Biochemical Engineering/Biotechnology 107: 113-132.
  • Hampson CR, Quamme HA, Hall JW, MacDonald RA, King MC, Cliff MA (2000). Sensory evaluation as a selection tool in apple breeding. Euphytica 111:79-90.
  • Harker FR, Maindonald J, Murray SH, Gunson FA, Hallett IC, Walker SB (2002). Sensory interpretation of instrumental measurements. 1. Texture of apple fruit. Postharvest Biology and Technology 24: 225-2
  • Harker FR, Kupferman EM, Marin AB, Gunson FA, Triggs CM (2008). Eating quality standards for apples based on consumer preferences. Postharvest Biology and Technology 50: 70-78.
  • Ikase L, Seglina D (2008). Fruit quality assessment of apple cultivars. Proceedings of International Scientific Conference Sustainable Fruit Growing Latvia.
  • Iwanami H (2011). Breeding for fruit quality in apple. In: MA Jenks, P Bebeli (Eds) Breeding for Fruit Quality, Wiley-Blackwell Publishing pp. 1948-1965.
  • Kader AA (2002). Quality and safety factors definition and evaluation for fresh horticultural crops. In: AA Kader (ed), Postharvest Technology of Horticultural Crops. University of California Agriculture and Natural Resources 3311 pp. 279-286.
  • Kaplan N, Özcan M, Çelik M (2003). Clonal Selection in Apple (Malus domestica Borkh cv. Amasya) Pakıstan Journal of Botany 35 (4): 571-578.
  • Kellerhals M, Eigenmann C (2006). Evaluation of apple fruit quality within the EU project HiDRAS. Proceedings of the 12th Ecofruit Conference Weinsberg pp. 165-171
  • Kenis K, Keulemans J, Davey MW (2008). Identification and stability of QTLs for fruit quality traits in apple. Tree Genetics & Genomes 4: 647-661.
  • Lespinasse Y (2010). Promising approaches for the breeding of new apple varieties www.fierabolzano.it/interpoma/mod_moduli.../4_Yves%20Lespasse.pdf (Erişim tarihi: 02012).
  • Liebhard R, Kellerhals M, Pfammatter W, Jertmini M, Gessler C (2003). Mapping quantitative physiological traits in apple (Malus x domestica Borkh.). Plant Molecular Biology 52: 511-526. Luby J (2011). Challenges and opportunities of breeding for consumer preferences in apple and grape. www.appliedplantsciences.umn.edu/prod/.../cfans_content_324270.pdf (Erişim tarihi: 10.05. 2012).
  • Malanczuk ML (2005). Training system and fruit quality in the apple cultivar 'Jonagold'. Postharvest Biology Technology 14: 214-217.
  • Marondedze C (2009). Functional genomic characterization of fruit quality traits in apple (Malus x domestica Borkh.). PhD Thesis University of the Western Cape, South Africa.
  • Mehinagic E, Royer G, Symoneauxa R, Bertrand D, Jourjon F (2004). Prediction of the sensory quality of apples by physical measurements, Postharvest Biology and Technology 34: 257-269.
  • Miller S, Hampson C, Mcnew R, Berkett L, Brown S, Clements J, Crassweller R, Garcia E, Greene D, Greene G (2005). Performance of apple cultivars in the 1995 NE-183 regional project planting: III. Fruit sensory characteristics, Journal of the American Pomological Society 59(1): 28-43.
  • Seymour GB, Manning K, Eriksson EM, Popovich AH, King GJ (2002). Genetic identification and genomic organization of factors affecting fruit texture. Journal of Experimental Botany 53: 2065207
  • Volz R (2012). Assessing apple attributes. http://www.biotechlearn.org.nz/focus_stories/breeding_red_fl eshed_apples/assessing_apple_attributes (Erişim tarihi: 10.05.2012).
  • Watada AE, Abbott J A, Hardenburg RE (1980). Sensory characteristics of apple fruit. Journal of the American Society for Horticultural Science 105: 371-375.
  • Watada AE, Abbott JA, Hardenburg RE, Lusby W (1981). Relationships of apple sensory attributes to headspace volatiles, soluble solids, and titratable acids. Journal of the American Society for Horticultural Science 106: 130-132.
  • Weibel FP, Schmid A, Haseli A (2003). Efficient multi-location testing of scab resistant cultivars for organic apple production in Switzerland. Acta Horticulturae 622: 335-342.