Grouping lentil Genotypes by cluster methods related to linear regression model and Genotype × environment interaction variance

İnsan tüketimi için zengin bir protein kaynağı olan mercimek (Lens culinaris Medik.), dünyanın dördüncü en önemli baklagil ürünüdür. Genotip x Çevre (GÇ) interaksiyonu, diğer ürün performans denemelerinde olduğu gibi mercimekte de gözlenen ve bitki ıslahçıları için önemli bir konudur. On sekiz mercimek genotipi, 2008 ve 2010 yılları arasında 3 yıl ve 4 lokasyonda tesadüf blokları deneme desenine göre 4 tekerrürlü olarak yağmurla beslenen koşullar altında değerlendirilmiştir. GÇ interaksiyonu, kümeleme teknikleri kullanılarak analiz edilmiştir. Kombine ANOVA’ya göre, verim konusunda hem genotipler arasında hem de çevre koşulları arasında önemli farklılıklar bulunmuştur. Ayrıca, kombine varyans analizi, üç yönlü interaksiyonun (GYL) veya GÇ interaksiyonun son derece önemli olduğunu göstermiştir. GÇ interaksiyonun çok önemli olması, çalışılan genotiplerin hem crossover hem de non-crossover GÇ interaksiyon tiplerini sergilemekte olduğunu göstermiştir. Regresyon yöntemi dendogramına göre (1. Yöntem), GE (eğim) kaynağına göre hiçbir farklı genotipik grup bulunmazken, G (sabit) ve GE (eğim) kaynaklarına göre 2 farklı grup bulunmaktadır. Ayrıca, ANOVA yöntemleri dendogramları, GE kaynağına göre 11 farklı genotipik grup gösterirken, G ve GE kaynaklarına göre 12 farklı grup göstermiştir. Hem verim hem de istikrar performansı dikkate alındığında, G1 (1418,7 kg/ha), G5 (1324,4 kg/ha), G14 (1401,9 kg/ha) ve G15 (1307,3 kg/ha) genotipleri ulusal sürüm için tavsiye edilebilecek en olumlu genotipler olarak bulunmuştur. Böyle bir sonuç, gelecekte dünyanın diğer alanlarında regresyon ve ANOVA modellerine bağlı olarak mercimek genotiplerinin ve diğer ürünlerin araştırılmasında düzenli bir şekilde uygulanabilecektir.

Mercimek Genotiplerinin Doğrusal regresyon model ve genotip x Çevre interaksiyon varyansı ile ilgili kümeleme yöntemleri ile gruplanması

Lentil (Lens culinaris Medik.) as a rich source of protein for human consumption is the fourth most important pulse crop in the world. Genotype × environment (GE) interaction is observed in lentil like the other crops performance trials and is an important issue for plant breeders. Eighteen lentil genotypes were evaluated under rainfed conditions using a randomized complete block design with 4 replications for 3 years between 2008 and 2010 and at 4 different locations. GE interaction was analyzed using clustering techniques. There was considerable variation for grain yield among both genotypes and environments based on combined ANOVA. Also, combined analysis of variance indicated that three way interaction (GYL) or GE interaction was highly significant. The high significance of GE interactions is indicating the studied genotypes exhibited both crossover and non-crossover types of GE interaction. According to dendrograms of regression method (methods 1) there were 2 different genotypic groups based on G (intercept) and GE (line slope) sources while there were none different genotypic groups based on GE (line slope) source. Also, the dendrograms of ANOVA methods indicated 12 different genotypic groups based on G and GE sources and 11 different genotypic groups based on GE sources. Considering both mean yield and stability performance, genotypes G1 (1418.7 kg ha-1), G5 (1324.4 kg ha-1), G14 (1401.9 kg ha-1) and G15 (1307.3 kg ha-1) were found to be the most favorable genotypes which could be recommended for national releases. Such an outcome could be regularly applied in the future to exploration lentil genotypes and other crops based on regression or ANOVA models in the other areas of the world.

___

  • Abou-El-Fittouh HA, Rawlings JO, Miller PA (1969). Classification of environments to control genotype by environment interactions with an application to cotton. Crop Sci. 9, 135–140.
  • Annicchiarico P (2002). Defining adaptation strategies and yield stability targets in breeding programmes. In: Kang, M.S. Ed. Quantitative Genetics, Genomics, and Plant Breeding, p. 365–383. Wallingford, UK, CABI.
  • Brandle JE, Brule-Bable AL (1991). An integrated approach to oilseed rape cultivar selection using phenotypic stability. Theor. Appl. Genet. 81, 679-684.
  • Calinski T, Corsten LCA (1985). Clustering means in ANOVA by simultaneously testing, Biometrics 41, 39–4
  • Cooper M, Chapman SC, Podlich DW, Hammer GL (2002). The GP problem: Quantifying gene-to-phenotype relationships. Silico Biol. 2, 151–164.
  • Corsten LCA, Denis JB (1990). Structuring interaction in two way tables by clustering. Biometrics 46, 207–215.
  • Crossa J (1990). Statistical analyses of multilocation trials. Adv. Agron. 44, 55–85.
  • Dehghani H, Sabaghpour SH, Sabaghnia N (2008). Genotype × environment interaction for grain yield of some lentil genotypes and relationship among univariate stability statistics. Spanish J. Agric. Res. 6, 385–394.
  • Finlay KW, Wilkinson GN (1963). The analysis of adaptation in a plant breeding programme. Aust. J. Agric. Res. 14, 742–754.
  • Flores F, Moreno MT, Cubero JI (1998) A comparison of univariate and multivariate methods to analyze environments. Field Crops Res. 56, 271–286.
  • Francis TR, Kannenberg LW (1978). Yield stability studies in short-season maize: I. A descriptive method for grouping genotypes. Can. J. Plant Sci. 58, 1029–1034.
  • Gauch, H. G. 2006. Statistical analysis of yield trials by AMMI and GGE. Crop Sci. 46, 1488–1500.
  • Hayward MD, Bosemark NO Romagosa I (1993). Plant Breeding: Principles and Prospects. pp.550. Chapman and Hall, London.
  • Hopkins AA, Vogel KP, Moore KJ, Johnson KD Carlson IT (1995). Genotype effects and genotype by environment interactions for traits of elite switchgrass populations. Crop Sci. 35, 125–132.
  • Kang MS (1998). Using genotype-by-environment interaction for crop cultivar development. Adv. Agron. 62, 199–252.
  • Karimizadeh R, Dehghani H, Dehghanpour Z (2006). Using Cluster Analysis for Stability of Maize Hybrids. J. Crop Produc. Process. 10, 337–348.
  • Karimizadeh R, Mohammadi M. Sabaghnia N. Shefazadeh MK Pouralhossini J (2012). Univariate stability analysis methods for determining genotype × environment interaction of durum wheat grain yield. African J. Biotech. 11, 2563–2573.
  • Lin CS (1982). Grouping genotypes by a cluster method directly related to genotype–environment interaction mean square. Theor. Appl. Genet. 62, 277–280.
  • Lin CS, Butler G (1990) Cluster analyses for analyzing two-way classification data. Agron. J. 82, 344–348.
  • Lin CY, Lin CS (1994) Investigation of genotype-environment interaction by cluster analysis in animal experiments. Can. J. Animal Sci. 74, 607–612.
  • Lin CS, Thompson B (1975). An empirical method of grouping genotypes based on a linear function of the genotype environment interaction. Heredity 34, 255–263.
  • Lin CS, Binns MR, Lefkovitch LP (1986). Stability analysis: where do we stand? Crop Sci. 26, 894–900.
  • Lin CS, Butler G, Hall I, Nault C (1992). Program for investigating genotype-environment interaction. Agron. J. 84, 121–124.
  • Mandel J (1961). Non-additivity in two-way analysis of variance. J. Am. Statist. Ass. 56, 878–888.
  • Mohebodini M, Dehghani H, Sabaghpour SH (2006). Stability of performance in lentil (Lens culinaris Medik) genotypes in Iran. Euphytica 149, 343–352.
  • Mungomery VE, Shorter R, Byth DE (1974). Genotype environment interactions and environmental adaptation. 1 Pattern analysis - application to soya bean populations. Aust. J. Agric. Res. 25, 59–72.
  • Pinthus JM (1973). Estimate of genotype value: a proposed method. Euphytica 22, 121–123.
  • Robert N (1997). Structuring genotype × environment interaction for quality traits in bread wheat, in two multi-location series of trials. Euphytica 97, 53–66.
  • Sabaghnia N, Dehghani H, Sabaghpour SH (2008a). Graphic analysis of genotype by environment interaction for lentil yield in Iran. Agron. J. 100, 760-764.
  • Sabaghnia N, Sabaghpour SH Dehghani H, (2008b). The use of an AMMI model and its parameters to analyse yield stability in multienvironment trials. J. Agric. Sci. 146, 571-581.
  • Sabaghpour SH, Safikhni M, Sarker A, Ghaffri A, Ketata H (2004). Present status and future prospects of lentil cultivation in Iran. Proc 5th European Conference on Grain Legumes, 7-11 June, Dijon, France.
  • Sokal R, Michener C (1958). A statistical method for evaluating systematic relationships. Univ. Kansas Sci. Bull. 38, 1409–1438.
  • Yan W, Hunt LA, Johnson P, Stewart G, Lu X (2002) On-farm strip trials vs. replicated performance trials for cultivar evaluation. Crop Sci 42, 385–392.
  • Yan W, Kang MS (2003). GGE biplot analysis: A graphical tool for breeders, geneticists, and agronomists. CRC Press. Boca Raton, FL.
  • Yan W, Tinker NA (2005). An integrated system of biplot analysis for displaying, interpreting, and exploring genotype by-environment interactions. Crop Sci. 45, 1004–1016.
  • Yue GL, Roozeboom KL, Schapaugh Jr. WT, Liang GH (1997) Evaluation of soybean cultivars using parametric and nonparametric stability estimates. Plant Breed. 116, 271–275.