Enerji Dağılım X-Ray Floresan Spektroskopisi İle Bitki Besin Elementi Analizleri

Son yıllarda tarımsal üretimde yaşanan küresel dalgalanmalar mevcut tarım teknolojilerin sorgulanmasına neden olmuştur. Özellikle ülkemizde bitki besin elementi analizleri konusunda halihazırda analiz yöntemlerinin ağır maliyeti ve hammadde konusunda dışa bağımlılık üretici ve araştırmacılarımızın belini bükmektedir. Bu sorunların çözümü adına alternatif teknolojilerin geliştirilmesi amaçlanarak yaptığımız çalışmada günümüzde popüler olan X-ışını teknolojisinden yararlanılmış, bitkilerin toplam besin elementi içeriklerinin belirlenmesinde mevcut yöntemlere göre daha düşük maliyetle ve pratik bir şekilde yapılabileceği hedeflenmiştir. Bu doğrultuda, ülkemizde yaygın olarak yetiştiriciliği yapılan çay, lahana ve mısır bitkilerinin X ışını floresan tekniğiyle çalışan EDXRF cihazıyla kuru bitki okumaları yapılmış Kalsiyum (Ca), Potasyum (K), Magnezyum (Mg), Kükürt (S), Demir (Fe), Bakır (Cu), Çinko (Zn), Mangan (Mn), Fosfor (P) elementlerinin mg/kg cinsinden değerleri tespit edilmiştir. Eş zamanlı olarak bu bitki örnekleri ICP cihazında da okutulmuştur. ICP okumaları referans kabul edilerek EDXRF cihazı ICP-OES cihazına göre korelasyonu sağlanmıştır. Bu korelasyonda her element için lineer regresyon analizi yapılarak re-slope ve intercept değerleri belirlenmiştir. Her bir bitki için belirlenen bu değerler EDXRF cihazına yüklenerek elde edilen formül yardımıyla tahmini ICP değerleri hesaplanmıştır. Yapılan istatistiki hesaplamalar sonucunda r2 değerleri p<0.05 p<0.01 düzeyinde yakınlık tespit edilmiştir. Sistemin doğruluğunu kontrol etmek amacı ile sertifikalı referans bitki materyalleri kullanılmış, yapılan analizler sonucunda %81-119 arasında geri kazanımlar elde edilmiştir. Bu oranlar sertifikalı materyaller ile EDXRF cihazı arasındaki okumalarda pozitif ilişkiler görmemize sebep olmuştur. Böylelikle bu teknolojinin entegrasyonu bitki besin elementi analizleri için laboratuvar bağımlılığı azaltmakta, aynı zamanda düşük maliyet ve zamandan tasarruf edilerek hem tarımsal yetiştiricilik açısından üretici ve araştırmacılar için önemli bir kaynak olma niteliği taşımaktadır.
Anahtar Kelimeler:

EDXRF, ICP, Besin, Maliyet, Metot

Energy Dispersion X-Ray Fluorescence Spectroscopy for Plant Nutrient Analysis

Global fluctuations in agricultural production in recent years has led to the questioning of existing agricultural technologies. Plant nutrient analyses on the cost and methods of analysis, especially in our country currently heavy dependence on raw materials manufacturer and bends the back of our researchers. For this purpose, in the work we do that are popular in recent years X-ray technology, taking advantage of a lower cost compared to the existing methods of the plants of total and elemental  that can be done in a practical way, it is aimed. Our work in this direction, in our country, widely cultivated tea, cabbage, and corn plants, X-ray fluorescence EDXRF technique working with plant dry readings made with the device Calcium (Ca), potassium (K) magnesium (Mg), sulfur (S) Iron (Fe), Copper (Cu), zinc (Zn), Manganese (Mn), Phosphorus (P) of the elements mg/kg denominated in the values were determined. Simultaneously, the samples of this plant are given in the ICP device. The device adopted by reference readings EDXRF ICP ICP-OES according to the correlation device is provided. This correlation by linear regression analysis for each element in re-slope and intercept values were determined. The formula determined for each plant estimated values obtained by EDXRF-ICP values were calculated with the help of installing the device. Statistical calculations performed as a result of the r2 values p<0.05 p<0.01 at the level of proximity have been identified. Plant certified reference materials used to verify the accuracy of the system with the aim of your analysis results %81-119 between the feedback has been obtained. Positive relationships between these rates with certified materials EDXRF has been the reason we see the device in reading. Thus, the integration of this technology for plant nutrient analysis laboratory by eliminating the dependence, low cost and time saving in terms of agricultural production and producers and is intended to be an important resource for researchers.

___

  • Aksoy, T. 1977. Artan Miktarlarda Verilen Fosfor ve Çinkonun Mısır Bitkisinin Demir ve Bakır Alımı Üzerine Etkisi. A.Ü. Ziraat Fakültesi Yıllığı, 27, 145-154.
  • Aslan, A.; Budak, G.; Karabulut, A. 2004. The amounts of Fe, Ba, Sr, K, Ca and Ti in some lichens growing in Erzurum province (Turkey). Journal of Quantitative Spectroscopy and Radiative Transfer 88: 423-431.
  • Barua, D. N., and S. B. Deb (1960). Variation in the nitrogen content of tea leaves. Jour. Sci. Food. Agr 11 : 366 – 370.
  • Bohle, J. Jr. and Lindsay, W. L. 1969. Micronutrients. The Fertilizer Shoe-Nails, Part 6, in the Limelight-Zinc Fertilizer Solitions, 13, 6.
  • Bowen, J.E. 1969. Absorption of Copper, Zinc and Manganese by Sugarcane Tissue. Plant Physiology, 44, 225.
  • Chuparina, E.V.; Gunicheva, T.N. 2003. Nondestructive X-ray fluorescence determination of some elements in plant materials. Journal of Analytical Chemistry 58: 856-861.
  • Clark, R.B.; Frank, K.D.; Zaifnejad, M.; Denning, J. 1992. X-ray fluorescence analysis of small leaf samples mixed with cellulose or boric acid. Communications in Soil Science and Plant Analysis 23: 569-583.
  • De Vries, J.L.; Vrebos, B.A.R. 2002. Quantification of infinitely thick specimens by XRF analysis. p. 341-406. In: Grieken, R.E.van.; Markowicz, A.A., eds. Handbook of X-ray spectrometry. 2ed. Marcel Dekker, New York, NY, USA.
  • Fifield, F.W.; Haines, P.J. 1997. Environmental analytical chemistry. Blackie Academia & Professional, London, UK.
  • Giordano, P.M., Noggle, J.C. and Mortvedt, J.J. 1974. Zinc Uptake by Rice as Affected by Metabolic Inhibitors and Competing Cations. Plant and Soil, 41, 637.
  • Gratão, P.L.; Monteiro, C.C.; Antunes, A.M.; Peres, L.E.P.; Azevedo, R.A. 2008. Acquired tolerance of tomato (Lycopersicon esculentum cv. Micro-Tom) plants to cadmium-induced stress. Annals of Applied Biology 153: 321-333.
  • Hakerlerler, H. und Höfner, W. 1982. Kurzmitteilung Wechselwirkungen von Fe, Zn und Mn bei Mais im Cefassversuch. Zeits. für Pflanzen. und Bodenkunde, 145,88-90.
  • Hewitt, E.J. 1963. Essential Nutrients Elements For Plant. In F.C. Steward ed. Plant Physiology, vol.,3. Academic Press, London, New York.
  • Krantz, B.A., and W. V. Chandler (1951). Lodging, leaf composition and yield of corn, asinfluenced by heavy applications of nitrogen and potash. Agron. Jour. 43: 547-552.
  • Lin, C. F. (1963) . Leaf analysis as a guide to nitrogen fertilization of tea bushes.I. Bull. Pinchen Tea Expt Sta. 15;27-42.
  • Maity, J.P.; Kar, S.; Chakraborty, A.; Sudershan, M.; Santra, S.C. 2010. Study on trace elements (using energy dispersive X-ray fluorescence technique) of edible seed from Cicer arietinum L. plants developed from gamma irradiated seeds and variation of yielding capacity. Journal of Radioanalytical and Nuclear Chemistry 283: 225-230.
  • Marguí, E.; Queralt, I.; Carvalho, M.L.; Hidalgo, M. 2005. Comparasion of EDXRF and ICP-OES after microwave digestion for element determination in plant specimens from an abandoned mining area. Analytical Chimica Acta 549: 197-204.
  • Marguí, E.; Queralt, I.; Hidalgo, M. 2009. Application of X-ray fluorescence spectrometry to determination and quantification of metals in vegetal material. Trends in Analytical Chemistry 28: 362-372.
  • Miah, M.Y.; Wang, M.K.; Chino, M. 1999. Energy dispersive X-ray fluorescence for rapid potassium, calcium and chloride diagnosis in barley. Journal of Plant Nutrition 22: 229-235.
  • Necemer, M.; Kump, P.; Scancar, J.; Jacimovic, R.; Simcic, J.; Pelicon, P.; Budnar, M.; Jeran, Z.; Pongrac, P.; Regvar, M.; Vogel-Mikus, K. 2008. Application of X-ray fluorescence analytical techniques in phytoremediation and plant biology studies. Spectrochimica Acta Part B 63: 1240-1247.
  • Noda, T.; Tsuda, S.; Mori, M.; Takigawa, S.; Matsuura-Endo, C.; Kim, S.-J.; Hashimoto, N.; Yamauchi, H. 2006. Determination of the phosphorus content in potato starch using an energy dispersive X-ray fluorescence method. Food Chemistry 95: 632-637.
  • Oliveira, A.L.; Almeida, E.; Silva, F.B.R.; Nascimento Filho, V.F. 2006. Elemental contents in exotic Brazilian tropical fruits evaluated by energy dispersive X-ray fluorescence. Scientia Agricola 63: 82-84.
  • Orescanin, V.; Katunar, A.; Kutle, A.; Valkovic, V. 2003. Heavy metals in soil, grape and wine. Journal of Trace and Microprobe Techniques 21: 171-180.
  • Queralt, I.; Ovejero, M.; Carvalho, M.L.; Marques, A.F.; Llabrés, J.M. 2005. Quantitative determination of essential and trace element content of medicinal plants and their infusions by XRF and ICP techniques. X-Ray Spectrometry 34: 213-217.
  • Taban, S. ve Turan, C. 1987. Değişik Miktarlardaki Demir ve Çinkonun Mısır Bitkisinin Gelişmesi ve Mineral Madde Kapsamları Üzerine Etkileri. Doğa, TU. Tar. Ve Or. D. 11, 448-456.
  • Tiago Tezotto et al., (2013) Simple procedure for nutrient analysis of coffee plant with energy dispersive X-ray fluorescence spectrometry (EDXRF). Scienta Articola.
  • Tyler, K. B., and O. A. Lorenz (1962) Diagonistic nutrients needs in vegetables. Better Crops with Plant Food 46: 6-13.
  • Van Raij, B.; Cantarella, H.; Quaggio, J.A.; Furlani, A.M.C. 1996. Recommendations of Fertilizer and Limestone for the São Paulo State. Instituto, Campinas, SP, Brazil (in Portuguese, with abstract in English).
  • Viets, F.G., Jr., Boawn, L.C. and Crawford, C.L. 1954. Zinc Contents and Deficiency Symptoms of 26 Crops Grown on a Zinc-Deficient Soil. Soil Science, 78, 305-316.
Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi-Cover
  • ISSN: 1308-7576
  • Başlangıç: 1991
  • Yayıncı: Yüzüncü Yıl Üniversitesi Ziraat Fakültesi