Çinko, Tuz ve Mikoriza Uygulamalarının Mısırın Gelişimi ile P ve Zn Alımına Etkisi

Tuzlu topraklarda yetiştirilen bitkilerin gelişimi ve besin element alımı önemli farklılıklar göstermektedir. Bu çalışmada tuz uygulaması yapılan ve yapılmayan koşullar (0, 100 mg Na Cl/kg) ile artan çinko uygulamaları (0, 25, 50 mgZn/kg)’nın mikorizalı ve mikorizasız ortamlarda mısırın gelişim kriterleri ile fosfor ve çinko alımına etkisi araştırılmıştır. Deneme tesadüf blokları deneme desenine göre 3 tekerrürlü olarak iklim odasında yürütülmüştür. Çalışma sonunda mikoriza aşılamasının mikorizasız uygulamalara göre yaş ağırlık, kuru ağırlık, fosfor ve çinko içeriğinde önemli düzeyde artış sağladığı belirlenmiştir. Tuz uygulaması ile bitki boyu ve yaş ağırlıkta azalma, fosfor alımında ise artış olduğu görülmüştür. Çinko uygulamalarına bağlı olarak da bitki boyu, yaş ağırlık ve kuru ağırlık ile fosfor ve çinko içeriğinin arttığı belirlenmiştir.

Effects of Zinc, salt and Mycorrhiza Applications on the Development and the Phosphorus and Zinc Uptake of Maize

Growth and nutrient uptake of plants grown in saline soils vary considerably. In this study, the development criteria and the phosphorus and zinc uptake of maize were investigated on salt applied and untreated (0 and 100 mg Na Cl kg); increasing zinc applications (0, 25, 50 mg Zn kg) and mycorrhizal and non-mycorrhizal conditions. The study was conducted in a climate chamber according to a randomized block design with three replications. At the end of the study, it was determined that mycorrhiza inoculated applications provided a significant increase in fresh weight, dry weight, phosphorus and zinc contents compared to the non-mycorrhizal applications. With the application of salt, there was a reduction in fresh weight and plant height, but an increase in phosphorus uptake. Based on the zinc applications, the plant height, fersh weight and dry weight were increased as well as with the content of phosphorus and zinc.

___

  • Alpaslan M, İnal A, Güneş A, Çıkılı Y, Özcan H (1999). Effect of zinc treatment on the alleviation of sodium and chloride injury in tomato (Lycopersicum esculentum (L.) Mill. cv. Lale) Grown Under Salinity. Tr. J. Botany. 23;1-6.
  • Alguacil MM, Hernandez JA, Caravaca F, Portillo B, Roldan A (2003). Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi-arid soil. Physiologia Plantarum. 118: 562–570.
  • AbdEl-Hady BA (2007). Effect of zinc application on growth and nutrient uptake of barley plant irrigated with saline water. Journal of Applied Sciences Research. 3 (6): 431-436.
  • Ali MH (2011). Management of salt-affected soils. Practices of Irrigation & On-farm Water Management. 2:271-325.
  • Anonim (2011). http://www2.cedgm.gov.tr/dosya/cevreatlasi/toprakvearazi.pdf(Erişim tarihi 10 Haziran 2012).
  • Aydeniz A (1985). Soil Management. Ankara Univ. Agr. Fac. Public. no: 928, Course book no:263.
  • Ayyıldız M (1990). Sulama suyu kalitesi ve tuzluluk problemleri. Ankara Üniv. Ziraat Fakültesi Kültürteknik Bölümü, Ankara Üniv. Ziraat Fak. Yayınları: 1196, Ders Kitabı: 344, Ankara, 282s. Burke DJ, Hamerlynck EP, Hahn D (2003). Interactions between the salt marsh grass season. Spartina patens, arbuscular mycorrhizal fungi and sediment bacteria during the growing. Soil Biol. Biochem.35: 501–511.
  • Cantrell IC, Linderman RG (2001). Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant and Soil. 233: 269–281.
  • Colla G, Rouphael Y, Cardarelli M, Tullio M, Rivera CM, Rea E (2008). Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biology and Fertility of Soils 44: 501–509.
  • Demir S, Onoğur E (1999). Glomus intraradices Schenck&Smith: A hopeful vesicular-arbuscular mycorrhizal (VAM) fungus determined in soils of Türkiye. The Journal of Turkish Phytopathology. 28 (1): 33-34.
  • Dixon RK, Garg VK, Rao MV (1993). Inoculation of Leucaena and prosopis seedlings with Glomus and Rhizobium species in saline soil: rhizosphere relations and seedlings growth. Arid Soil Res Rehabil. 7:133–144.
  • Ekmekçi E, Apan M, Kara T (2005). Tuzluluğun bitki gelişimine etkisi. OMÜ Zir. Fak. Dergisi. 20 (3):118-125.
  • Evelin H, Kapoor R, Giri B (2009). Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Annals of Botany. 104: 1263–1280.
  • Faber BA, Zasoski RJ, Burau RG, Uriu K (1990). Zinc uptake by corn as affected by vesicular-arbuscular mycorrhizae. Plant and Soil. 129 (2);121-130.
  • Feng G, Zhang FS, Li Xl, Tian CY, Tang C, Rengel Z (2002). Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza. 12: 185–190.
  • Giri B, Mukerji KG (2004). Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza. 14: 307–312.
  • Giri B, Kapoor R, Mukerji KG (2003). Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Biol Fertil Soils. 38:170–175.
  • Grattan SR, Maas EV (1988). Effect of salinity on phosphate accumulation and injury in soybean. I. influence of CaCI/NaCI ratios. Plant and soil. 105;25-32.
  • Gupta R, Krishnamurthy KV (1996). Response of mycorrhizal and non-mycorrhizal Arachis hypogea to NaCl and acid stress. Mycorrhiza. 6, 145-149.
  • Gupta N, Rautaray S (2005). Growth and development of AM fungi and maize under salt and acid stres. Acta Agriculturae Scandinavica Section B-Soil and Plant Science. 55: 151-157.
  • Güngör Y, Erözel Z (1994). Drenaj ve arazi islahı. Ankara Üniv., Ziraat Fak. Yayınları No:1341, Ders Kitabı:389, Ankara, 232s.
  • Günes A, İnal A, Alpaslan M, Çıkılı Y (1999). Effect of salinity on phosphorus induced zinc deficency in pepper (Capsicum annuum L.) plants. Tr. J. of Agriculture and Forestry. 23; 459-464.
  • Heggo A.M, Barakah FN (1994). Mycorrhizal role on phosphorus-zinc interaction in calcareous soil cultivated with corn (Zea maize L.). http://colleges.ksu.edu.sa/FoodsAndAgriculture/SoilSciences/DEPARTMENT%20PUBLISH/Tit le1pdf. (Erişim tarihi: 13 Temmuz 2012).
  • Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008). Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microbial Ecology. 55: 45–53.
  • İnal A, Guneş A (2008). Interspecific root interactions and rhizosphere effects on salt ions and nutrient uptake between mixed grown peanut/maize and peanut/barley in original saline–sodic–boron toxic soil. Journal of Plant Physiology. 165 (5); 490-503.
  • Kacar, B (2009). Toprak analizleri. Genişletilmiş baskı, Nobel yayıncılık, ISBN: 9786053951841
  • Kacar B, İnal A (2008). Bitki Analizleri, Nobel Yayın No:1241, Fen Bilimleri:63.
  • Kacar B, Katkat AV (2007). Bitki Besleme. Genişletilmiş ve Güncellenmiş 3. Baskı, Nobel Yayın No:849, Fen ve Biyoloji Yayınları Dizisi: 29.
  • Kanber R, Kırda C, Tekinel O (1992). Sulama suyu niteliği ve sulamada tuzluluk sorunları. Ç.Ü. Ziraat Fakültesi Genel Yayın No:21, Ders Kitapları Yayın No:6, Adana.
  • Khoogar Z, Maftoun M, Karimian N, Sepaskhah R (1999). Vegetative growth and chemical composition of tomato plants as affected by different types of salt stress and zinc fertilization. Iran Agricultural Research. 18: 81–90.
  • Khoshgoftarmanesh AH, Shariatmadari H, Karimian N, Kalbasi M, van der Zee SEATM (2006). Cadmium and zinc in saline soil solutions and their concentrations in wheat. Soil Sci. Soc. Am. J. 70:582– 5
  • Khoshgoftar AH, Shariatmadari H, Karimian N, Kalbasi M, van der Zee SEATM, Parker DR (2004). Salinity and Zn application effects on phytoavailability of Cd and Zn. Soil Sci. Soc. Am. J. 68:1885–1889.
  • Maas EV, Poss JA (1989). Salt sensitivity of wheat at various growth stages. Irrigation Science. 10(1);2940, Marschner H (1995). Mineral nutrition of higher plants, 2nd edn. New York, NY: Academic Press.
  • Marschner H, Çakmak İ (1986). Mechanism of phosphorous induced zinc deficiency in cotton. II evidence for impaired shoot control on phosphorus uptake nad translocation under zinc deficiency. Physiol. Plantarum. 68; 491-496.
  • Parida AK, Das AB, Mittra B (2004). Effects of salt on growth, ion accumulation photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees-Struct. Funct. 18: 167–174.
  • Parker DR, Aguilera JJ, Thomason DN (1992). Zinc- phosphorus Interactions in two cultivars of tomato (Lycopersicon esculentum L.) grown in chelator-buffered nutrient solutions. Plant and Soil. 143: 163-1
  • Patil A, Chavan PD 2001. Influence of salt stress on phosphorus metabolism in the roots and leaves of one month old Prosopis juliflora (SW) DC seedlings. Pharmacognosy Journal. DOI: 5530/pj.2001.25.9
  • Prabhakaran KP, Nair G, Babu R (1975). Zinc-phosphorus-iron interaction studies in maize. Plant and Soil. 42 (3);517-536.
  • Rabie GH, Almadini AM (2005). Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stres. African Journal of Biotechnology. 4 (3); 210-222.
  • Ramoliya P, Patel H, Pandey AN (2004). Effect of salinization of soil on growth and macro- and micronutrient accumulation in seedlings of Salvadora persica (Salvadoraceae). Forest Ecol. Mangt. 202 (1-3): 181-193.
  • Saleh J, Maftoun M, Safarzadeh S, Gholami A (2009). Growth, Mineral Composition, and Biochemical Changes of Broad Bean as Affected by Sodium Chloride and Zinc Levels and Sources. Communications in Soil Science and Plant Analysis. 40: 3046–3060.
  • Sannazzaro AI, Ruiz OA, Alberto EO, , Mene´ndez AB (2006). Alleviation of salt stress in Lotus glaber by Glomus intraradices. Plant Soil. 285:279–287.
  • Seres A, Bakonyi G, Posta K (2006). Zn uptake by maize under the influence of AM-fungi and Collembola Folsomia Candida. Ecol. Res. 21:692–697.
  • Sharma AK, Srivastava PC (1991). Effect of vesicular-arbuscular mycorrhizae and zinc application on dry matter and zinc uptake of greengram (Vigna radiata L. Wilczek). Biology and Fertility of Soil. 11 (1);52-56.
  • Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007). Improved growth of salinity-stressed soybean after inoculation with pre-treated mycorrhizal fungi. Journal of Plant Physiology. 164: 1144–1151.
  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2009). Influence of arbuscular mycorrhizae on the root system of maize plants under salt stress. Can. J. Microbiology. 55; 879-886.
  • Tain CY, Feng G, Li XL, Zhang FS (2004). Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline soil on salinity tolerance of plants Appl. Soil Ecol. 26 (2): 143-148.
  • Tufenkci S, Sönmez F, Gazioglu Sensoy RI (2006). Effects of arbuscular mycorrhiza fungus inoculation and phosphorous and nitrogen fertilizations on some plant growth parameters and nutrient content of soybean. Pakistan Journal of Biological Sciences, Pakistan Journal of Biological Sciences. 9 (6): 1121-1127.
  • Torun A, Gultekin I, Kalayci M, Yılmaz A, Eker S, Çakmak İ (2001). Effects of zinc fertilization on grain yield and shoot concentration of zinc, boron, and phosphorus of 25 wheat cultivars grown on a zinc-deficient and boron-toxic soil. Journal of Plant Nutrition. 24:1817–1729.
  • Yano-Melo AM, Saggin OJ, Maia LC (2003). Tolerance of mycorrhized banana (Musa sp. cv. Pacovan) plantlets to saline stress. Agriculture, Ecosystems and Environments. 95: 343–348.