Bazı Turunçgil Anaçlarının In vitro Kuraklık Stresi Koşullarında Performanslarının Araştırılması

Turunçgiller dünyanın tropik ve subtropik bölgelerinde ticari olarak yetiştiriciliği yapılan bir meyve türüdür.  Bitkilerin büyüme ve gelişimleri tuzluluk, kuraklık gibi abiyotik faktörlerden etkilenmektedir.  Küresel iklim değişikliğinin yakın gelecekte su stresi riskini artıracağı beklenmektedir.  Bitki biyoteknolojisinin amaçlarından biri kuraklığa tolerant bitkilerin geliştirilmesidir.  Çevresel stresler arasında kuraklık stresi bitki büyüme ve verimini en olumsuz etkileyen faktörlerden biridir.  Bitkilerin kuraklık stresine verdiği cevap oldukça karmaşık ve birçok genin ifadesinin gerçekleştiği bir süreçtir.  Bu çalışmada turunçgil anaçları arasında yer alan Troyer sitranjı ve C-35 sitranjı kullanılmıştır.  Bitkisel materyallere ait tohumlar çimlendirildikten sonra in vitro koşullarda kuraklık stresi uygulanmıştır.  Bitkilerin in vitro’da kuraklık stresi altında çoğaltım performansları ve verdikleri tepkiler belirlenmiştir.  Her iki anacında artan PEG dozlarında yaşamları ve çoğalmalarına devam ettirdikleri ancak performanslarının gerilediği tespit edilmiştir.  

Investigation into Performance of Some Citrus Rootstocks in In vitro Drought Stress Conditions

Citrus is a fruit species commercially in the tropical and subtropical regions of the world. Growth and development of plants are affected by environmental factors such as salinity and drought. Global climate change will increase water stress risk in the near future.  One of the purposes of plant biotechnology is the development of plants tolerant to drought. Among environmental stresses, drought stress is one of the factors that negatively affect plant growth and yield. The response of plants to drought stress is quite complex and is the process of many genetic expressions. In this study, Troyer citrange and C-35 citrange from the significant citrus rootstocks were used. After seeds of plant materials were germinated drought stress was applied in in vitro condition. The response of the plants to drought and performance of micropropagation has been determined. It was determined that both rootstocks continued their life and proliferation in increasing PEG doses, however their performance found to be declining.

___

  • Bhusal RC, Mizutani F, Rutto KL (2002). Selection of rootstocks for flooding and drought tolerance in citrus species. Pak. J. Biol. Sci. 5: 509-512.Blum A (2005). Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Aust. J. Agric. Res. 56(11): 1159–68.
  • Claeys H, Inzé D (2013). The agony of choice: How plants balance growth and survival under water-limiting conditions. Plant Physiol. 162(4): 1768–79.
  • Dulay RMR, Castro MEGD (2016). Antibacterial and antioxidant activities of three Citrus leaves extracts. Der Pharmacia Lettre, 8: 13.
  • Gimeno J, Gadea J, Forment J, Perez-Valle J, Santiago J, Martinez-Godoy MA, Yenush L, Belles JM, Brumos J, Colmenero-Flores JM, Talon M, Serrano R (2009). Shared and novel molecular responses of mandarin to drought. Plant Mol Biol, 70: 403–420.
  • Joshi R, Shukla A, Sairam RK (2011). In vitro screening of rice genotypes for drought tolerance using polyethylene glycol. Acta Physiol. Plant. 33(6): 2209-2217.
  • Lawlor DW (2013). Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities. J. Exp. Bot. 64(1): 83–108.
  • Marssaro AL, Morais-Lino LS, Cruz JL, Ledo, CADS, Santos-Serejo JAD (2017). Simulation of in vitro water deficit for selecting drought-tolerant banana genotypes. Pesq. Agropec. Bras, 52(12), 1301-1304.
  • Paranychianakis NV, Chartzoulakis KS (2005). Irrigation of Mediterranean crops with saline water: from physiology to management practices. Agr. Ecosyst. Environ. 106: 171–187.
  • Perez-Perez JG, Syvertsen JP, Botia P, Garcia-Sanchez F (2007). Leaf water relations and net gas exchange responses of salinized Carrizo citrange seedlings during drought stress and recovery. Ann. Bot. 100: 335–345.
  • Reddy AR, Chaitanya KV, Vivekanandan M (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 161: 1189–1202.
  • Rodriguez-Gamir J, Primo-Millo E, Forner JB, Forner-Giner MA (2010). Citrus rootstock responses to water stress. Sci Hortic. 126: 95–102.Şahin-Çevik M (2012). A WRKY transcription factor gene isolated from Poncirus trifoliata shows differential responses to cold and drought stresses. J. Plant Omics. 5(5): 438-445.
  • Sivritepe N, Erturk U, Yerlikaya C, Türkan I, Bor M, Özdemir F (2008). Response of the cherry rootstock to water stress induced in vitro. Biol. Plant. 52(3): 573-576.Sohi S, Shri R (2018). Neuropharmacological potential of the genus Citrus: A review. J. Pharmacogn. Phytochem., 7(2): 1538-1548.
  • Souza JD, de Andrade Silva EM, Coelho Filho MA, Morillon R, Bonatto D, Micheli F, da Silva Gesteira A (2017). Different adaptation strategies of two citrus scion/rootstock combinations in response to drought stress. PloS one, 12(5): e0177993.
  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK (2006). Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. J Plant. 45(4): 523–39.
  • Xiao JP, Zhang LL, Zhang HQ, Miao LX (2017). Identification of genes involved in the responses of Tangor (C. reticulata× C. sinensis) to drought stress. BioMed Res. Int. 1-15.
  • Zhao P, Liu P, Shao J, Li C, Wang B, Guo X, et al (2014). Analysis of different strategies adapted by two cassava cultivars in response to drought stress: ensuring survival or continuing growth. J. Exp. Bot. 66(5):1477-1488.
Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi-Cover
  • ISSN: 1308-7576
  • Başlangıç: 1991
  • Yayıncı: Yüzüncü Yıl Üniversitesi Ziraat Fakültesi