Aşırı Kadmiyumun Semizotu Varyetelerinin Büyüme, Tolerans ve Fizyolojik Karakteristiklerine Etkisi

Bu çalışma, serada ve doğal ışık koşulları altında aşırı kadmiyumun (Cd) iki semizotu (Portulaca oleracea L.) varyetesinin (İstanbul çeşidi ve yabani varyete) bitki gelişimi ve fizyolojik karakteristikleri ile bazı metal besin iyonlarının bitkideki akümülasyonu ve dağılımı üzerine etkisini belirlemek amacıyla planlanmıştır. Bu amaçla, toprağa altı düzeyde Cd (0, 50, 100, 200, 400 ve 800 μM CdCl2) uygulanmıştır. Sonuçlara göre, Cd stresi her iki varyetede de doz artışına bağlı olarak bitki gelişimini kademeli olarak azaltmış ve varyetelerin fotosentetik pigment içerikleri (klorofil a, b, a+b ve karotenoid), nispi nem içeriği, biyokonsantrasyon faktörü ve prolin akümülasyonunda azalmaya neden olmuştur. İstanbul çeşidine göre yabani varyetede biokütle üretimi ve fotosentetik pigment içeriklerindeki azalmalar daha fazla olmuştur. Bununla birlikte, Cd uygulamaları sonucu her iki varyetede gövdede ve kökte Cd, çinko (Zn) ve sodyum (Na) kapsamları ile Cd alımları, toplam Cd akümülasyon oranı, kökler aracılığıyla alınan net Cd akümülasyonu, malondialdehit (MDA) ve hidrojen peroksit (H2O2) içerikleri artmıştır. Kök uzunluğu, gövdede ve kökte potasyum (K) ve (Ca) kapsamları, Cd’un translokasyon faktörü (TF) ve yaprakların membran geçirgenliğindeki (MP) değişimler çeşitlere göre farklılıklar göstermiştir. Elde edilen sonuçlara göre; yetişme ortamındaki aşırı Cd’un etkilerinin İstanbul çeşidine (Cd’a dayanıklı) göre yabani semizotu varyetesinde (Cd’a hassas) daha belirgin olduğu kanaatine varılmıştır.

Effects of Excess Cadmium on Growth, Tolerance and Physiological Characteristics of Purslane Varieties

This study was designed to understand the effects of excess cadmium (Cd) on plant growth andphysiological characteristics as well as the accumulation and distribution of some metal nutrient ions with twopurslane (Portulaca oleracea L.) varieties (cv. Istanbul and wild variety) in greenhouse at natural lightconditions. For this purpose, six levels of Cd (0, 50, 100, 200, 400, and 800 μM CdCl2) were treated to the soil.The results indicated that Cd stress gradually depressed plant growth and caused the decreases in photosyntheticpigment contents (chlorophyll a, b, a+b, and carotenoids), relative water content (RWC), bio-concentrationfactor (BCF), and proline accumulation in shoot for both varieties. The reductions in biomass production andphotosynthetic pigments contents in wild variety were higher than in cv. Istanbul. Moreover, Cd exposureincreased the concentrations of Cd, zinc (Zn), and sodium (Na) and the uptakes of Cd in shoot and root, totalaccumulation rate (TAR) of Cd and net accumulation of Cd via roots, the contents of malondialdehyde (MDA)and hydrogen peroxide (H2O2) in both varieties. The changes in root length, the concentrations of potassium (K)and calcium (Ca) in shoot and root, translocation factor (TF) of Cd, and membrane permeability (MP) of theleaves were shown differences in varieties. According to these results obtained, it was concluded that the effectof Cd exposure was more evident in wild variety (Cd-sensitive) than in cv. Istanbul (Cd-tolerant).

___

  • Ahmad P, Allah EFA, Hashem A, Sarwat M, Gucel S (2016). Exogenous Application of Selenium Mitigates Cadmium Toxicity in Brassica juncea L. (Czern & Cross) by Up-Regulating Antioxidative System and Secondary Metabolites. J. Plant Growth Regul. 35: 936–950.
  • Ait Ali N, Bernal MP, Ater M (2002). Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays. Plant and Soil 239: 103–111. https://doi.org/10.1023/A:1014995321560.
  • Baker AJM (1981). Accumulators and excluders-strategies in the response of plants to heavy metals. J. Plant Nutr. 3: 643-654. DOI: 10.1080/01904168109362867.
  • Barcelo J, Poschenrieder C (1990). Plant water relations as affected by heavy metal stress: A review. J. Plant Nutr. 13 (1): 1–37. https://doi.org/10.1080/01904169009364057.
  • Bates LS, Waldren RP, Teare ID (1973). Rapid determination of free proline for water-stress studies, Plant and Soil 39: 205–207. https://doi.org/10.1007/BF00018060.
  • Bayoumi TY, Eid MH, Metwali EM (2008). Application of physiological and biochemical indices as a screening technique for drought tolerance in wheat genotypes. Afr. J. Biotechnol. 7: 2341–2352. https://doi.org/10.5897/AJB2008.000-5059.
  • Benavides MP, Susana M, Gallego SM, Tomaro ML (2005). Cadmium toxicity in plant. Brazil. J. Plant Physiol. 17: 21–34. https://doi.org/10.1590/S1677-04202005000100003.
  • Chen W, Dong Y, Hu G, Bai X (2018). Effects of exogenous nitric oxide on cadmium toxicity and antioxidative system in perennial ryegrass. J. Soil Sci. Plant Nutr. 18 (1): 129–143.
  • Çikili Y, Samet H, Dursun S (2016). Cadmium toxicity and its effects on growth and metal nutrient ion accumulation in Solanaceae plants. Tarım Bilimleri Dergisi-Journal of Agric. Sciences 22: 576–587.
  • Clemens S (2006). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimi. 88: 1707–1719. https://doi.org/10.1016/j.biochi.2006.07.003.
  • De Maria S, Puschenreiter M, Rivelli AR (2013). Cadmium accumulation and physiological response of sunflower plants to Cd during the vegetative growing cycle. Plant Soil Environ. 59 (6): 254-261.
  • Dresler S, Hanaka A, Bednarek W, Maksymiec W (2014). Accumulation of low-molecular-weight organic acids in roots and leaf segments of Zea mays plants treated with cadmium and copper. Acta Physiol. Plant. 36 (6): 1565–1575. https://doi.org/10.1007/s11738-014-1532-x.
  • Ekvall L, Greger M (2003). Effects of environmental biomass-producing factors on Cd uptake in two Swedish ecotypes of Pinus sylvestris. Environ. Pollut. 121: 401–411.
  • Fuhrer J (1982). Ethylene biosynthesis and cadmium toxicity in leaf tissue of beans (Phaseolus vulgaris L.). Plant Physiol. 70: 162–167. https://doi.org/10.1104/pp.70.1.162.
  • Gonnella M, Charfeddine M, Conversa G, Santamaria P (2010). Purslane: A review of its potential for health and agricultural aspects. Eur. J. Plant Sci. Biotech. 4: 131–136.
  • Guo TR, Zhang GP, Zhang YH (2007). Physiological changes in barley plants under combined toxicity of aluminum, copper and cadmium. Colloids and Surface B: Biointerfaces 57: 182–188. https://doi.org/10.1016/j.colsurfb.2007.01.013.
  • He JY, Zhu C, Ren YF, Yan YP, Cheng C, Jiang DA, Sun ZX (2008). Uptake, subcellular distribution, and chemical forms of cadmium in wild-type and mutant rice. Pedosphere 18: 371–377.
  • Hodges DM, De Long JM, Forney CF, Prange RK (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207: 604–611. https://doi.org/10.1007/s004250050524.
  • Inouhe M, Ninomiya S, Tohoyama H, Joho M, Murayama T (1994). Different characteristics of roots in the cadmium-tolerance and Cd-binding complex formation between mono- and dicotyledonous plants. Journal of Plant Research 107: 201–207. DOI: 10.1007/BF02344245.
  • Leita L, De Nobili M, Mondini C, Baca-García MT (1993). Response of Leguminosae to cadmium exposure. J. Plant Nutr. 16: 2001–2012. https://doi.org/10.1080/019041693093 64670.
  • Lichtenthaler HK (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology 148: 350-382. https://doi.org/10.1016/0076-6879(87) 48036-1.
  • McGrath SP, Zhao FJ (2003). Phytoextraction of metals and metalloids from contaminated soils. Curr. Opi. Biotechnol. 14: 277–282. https://doi.org/10.1016/S0958-1669(03)00060-0.
  • Miller RO (1998). High-temperature oxidation: Dry ashing. In: Handbook of Reference Methods for Plant Analysis, Kalra YP (eds), pp.53-56. CRC Press, Boca Raton, FL.
  • Mitich LW (1997). Common purslane (Portulaca oleracea). Weed Technol. 11 (2): 394-397.
  • Moradi L, Ehsanzadeh P (2015). Effects of Cd on photosynthesis and growth of safflower (Carthamus tinctorius L.) genotypes. Photosynthetica 53 (4): 506–518. DOI: 10.1007/s11099-015-0150-1.
  • Mukherjee SP, Choudhuri MA (1983). Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol. Plantarum 58 (2): 166–170. https://doi.org/10.1111/j.1399-3054.1983.tb04162.x.
  • Naz A, Khan S, Qasim M, Khalid S, Muhammad S, Tariq M (2013). Metals toxicity and its bioaccumulation in purslane seedlings grown in controlled environment. Natural Science 5 (5): 573-579. https://doi.org/10.4236/ns.2013.55073.
  • Nazar R, Iqbal N, Masood M, Khan MIR, Syeed S, Khan NA (2012). Cadmium toxicity in plants and role of mineral nutrients in its alleviation. American Journal of Plant Sciences 3: 1476–1489. https://doi.org/10.4236/ajps.2012.310178.
  • Nikolić N, Kojić D, Pilipović A, Pajević S, Krstić B, Borišev M, Orlović S. (2008). Responses of hybrid poplar to cadmium stress: photosynthetic characteristics, cadmium and proline accumulation, and antioxidant enzyme activity. Acta Biologica Cracoviensia Series Botanica. 50 (2): 95–103.
  • Page A, Miller R, Keeney D (1982). Methods of soil analysis, 2nd edition. Soil Science Society of America, Inc. and American Society of Agronomy, Inc., Madison, Wisconsin. https://doi.org/10.1002/jpln.19851480319
  • Panda P, Nath S, Chanu TT, Sharma GD, Panda SK (2011). Cadmium stress-induced oxidative stress and role of nitric oxide in rice (Oryza sativa L.). Acta Physiol. Plant. 33 (5): 1737–1747.
  • Rivetta A, Negrini N, Cocucci M (1997). Involvement of Ca2+-calmodulin in Cd2+ toxicity during the early phase of radish (Raphanus sativus L.) seed germination. Plant Cell Environ. 20: 600–608. https://doi.org/10.1111/j.1365-3040.1997.00072.x.
  • Samet H, Çikili Y, Atikmen NÇ (2017). Role of Potassium in Alleviation of Cadmium Toxicity in Sunflower (Helianthus annuus L.). Journal of Agricultural Faculty of Gaziosmanpasa University (JAFAG) 34 (1): 179-188. https://doi.org/10.13002/jafag4197.
  • Sandalio LM, Dalurzo HC, Gómez M, Romero-Puertas MC, del Río LA (2001). Cadmium induced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot. 52: 2115–2126. https://doi.org/10.1093/jexbot/52.364.2115.
  • Sanitá di Toppi L, Gabbrielli R (1999). Response to cadmium in higher plants. Environ. Exp. Bot. 41: 105–130. https://doi.org/10.1016/S0098-8472(98)00058-6.
  • Shamsi IH, Jiang L, Wei K, Jilani G, Hua S, Zhang GP (2010). Alleviation of cadmium toxicity in soybean by potassium supplementation. J. Plant Nutr. 33: 1926-1938. https://doi.org/10.1080/01904167.2010.512052.
  • Sharma RK, Agrawal M (2006). Single and combined effects of cadmium and zinc on carrots: Uptake and bioaccumulation. J. Plant Nutr. 29: 1791–1804. DOI: 10.1080/01904160600899246
  • Sharma SS, Schat H, Vooijs R (1998). In vitro alleviation of heavy metal-induced enzyme inhibition by proline. Phytochemistry 49: 1531–1535. https://doi.org/10.1016/S0031-9422(98)00282-9
  • Shi G, Liu C, Cai Q, Liu Q, Hou C (2010). Cadmium accumulation and tolerance of two safflower cultivars in relation to photosynthesis and antioxidative enzymes. Bull. Environ. Contam. Toxicol. 85: 256–263. https://doi.org/10.1007/s00128-010-0067-0.
  • Singh RP, Agrawal M (2007). Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants. Chemosphere 67: 2229–2240.
  • Solti Á, Sárvári É, Tóth B, Basa B, Lévai L, Fodor F (2011). Cd affects the translocation of some metals either Fe-like or Ca-like way in poplar. Plant Physiol. Biochem. 49: 494–498. https://doi.org/10.1016/j.plaphy.2011.01.011.
  • Tiwari KK, Dwivedi S, Mishra S, Srivastava S, Tripathi RD, Singh NK, Chakraborty S (2008). Phytoremediation efficiency of Portulaca tuberosa rox and Portulaca oleracea L. naturally growing in an industrial effluent irrigated area in Vadodra, Gujrat, India. Environ. Monit. Assess. 147 (1-3): 15-22.
  • Tran TA, Popova LP (2013). Functions and toxicity of cadmium in plants: recent advances and future prospects. Turk. J. Bot. 37: 1–13. https://doi.org/10.3906/bot-1112-16.
  • Tripathi BN, Singh V, Ezaki B, Sharma V, Gaur JP (2013). Mechanism of Cu- and Cd-Induced Proline Hyperaccumulation in Triticum aestivum (Wheat). J. Plant Growth Regul. 32: 799–808.
  • Wang Q, Liang X, Dong Y, Xu L, Zhang X, Hou J, Fan Z (2013). Effects of exogenous nitric oxide on cadmium toxicity, element contents and antioxidative system in perennial ryegrass. J. Plant Growth Regul. 69: 11–20.
  • Xu LL, Fan ZY, Dong YJ, Kong J, Liu S, Hou J, Bai XY (2015). Effects of exogenous NO supplied with different approaches on cadmium toxicity in lettuce seedlings, Plant Biosystems. 149 (2): 270–279.
  • Yan B, Dai Q, Liu X, Huang S, Wang Z (1996). Flooding-induced membrane damage, lipid oxidation, and activated oxygen generation in corn leaves. Plant and Soil. 179: 261–268. https://doi.org/10.1007/BF00009336.
  • Zembala M, Filek M, Walas S, Mrowiec H, Kornaś A, Miszalski Z, Hartikainen H (2010). Effect of selenium on macro-and microelement distribution and physiological parameters of rape and wheat seedlings exposed to cadmium stress. Plant and Soil. 329 (1-2): 457-468. https://doi.org/10.1007/s11104-009-0171-2.
  • Zhang GP, Fukami M, Sekimoto H (2002). Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage. Field Plants Research 77: 93–98.
  • Zhao FJ, Lombi E, Mcgrath SP (2003). Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant and Soil. 249: 37–43.
  • Zhu YL, Zayed AM, Qian J-H, de Souza M, Terry N (1999). Phytoaccumulation of trace elements by wetland plants: II. Water hyacinth. J. Environ. Qual. 28 (1): 339–344.
Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi-Cover
  • ISSN: 1308-7576
  • Başlangıç: 1991
  • Yayıncı: Yüzüncü Yıl Üniversitesi Ziraat Fakültesi
Sayıdaki Diğer Makaleler

Soğukta Depolanan Kefal (Mugil cephalus) Filetolarının Tazeliğinin Duyusal ve Kimyasal Parametreler ile İlişkilendirilerek Bilgisayarlı Resim Analizi ile Belirlenmesi

Mutlu PİLAVTEPE ÇELİK

Zeytinyağı İşletmelerinde ISO 22000:2005 Gıda Güvenliği Yönetim Sisteminin Kurulması ve Uygulanmasında Karşılaşılan Zorluklar

Gamze SANER, Sule AZAK, Yaşar Tevfik TUZUN

Effects of Different Microbial Organic Fertilizers on Yield and Quality of Tomato Grown in Greenhouse Condition

Ertan YILDIRIM, Atilla DURSUN, Metin TURAN, Melek EKİNCİ, Fazilet PARLAKOVA KARAGÖZ, Raziye KUL, Zeynep GÖK

Antifeedant effect of two nano-capsuled essential oils against wheat weevil, Sitophilus granarius (L.) (Coleoptera: Curcurlionidae)

Nasim BAYRAMZADEH, Fariba MEHRKHOU, Ali Asghar POURMIRZA, Mehdi MAHMOUDIAN

Direct in vitro Regeneration and Transient Gus Assay: Towards Stable Genetic Transformation in Trifolium alexandrinum L.

Rumaisha ISHTIAQ, Sadam MUNAWAR, Muhammad Nisar ANJUM, Faiz Ahmad JOYIA, Ghulam MUSTAFA, Muhammad Amjad ALI, Muhammad Sarwar KHAN

Bayesyen yaklaşımında Genelleştirilmiş Linear Karışık Etkili Model ile Transformasyonun Karşılaştırılması

Burcu MESTAV, Adile TATLIYER, Sinan BAŞ

Kadmiyum, Kurşun ve Çinko ile Kirlenmiş Toprağın Brassica Napus ile Fitoksraksiyonuna EDDS Uygulamasının Etkisi

Nurcan KÖLELİ, Hatice DAĞHAN

Üniversite Öğrencilerinin Çevre Politikası Tercihleri: Ege Üniversitesi Örneği

Havva Ece SALALI, Ela ATIŞ, Cihat GÜNDEN, Kenan ÇİFTÇİ

The Effects of Rootstock Cutting Thickness on Final Take, Quality of Potted Grapevine Saplings

Rüstem CANGİ, Mustafa ETKER

The Dripline Uniformity in The Irrigation with Different Reclaimed Wastewaters

Üstün ŞAHİN, Talip TUNÇ