Üç Fazlı Bir Asenkron Motorun Çeşitli Bobin Adım Biçimi ile Performans ve Harmonik Analizi

Bu çalışmada üç-fazlı sincap kafesli bir asenkron motorun akım ve gerilim harmonikleri ile verim, çıkış gücü ve tork karakteristikleri sinüzoidal uyartım altında stator sargısında tam ve kesirli farklı sargı adımları kullanılarak sonlu elemanlar yöntemi ile incelenmiştir. Stator sargısı, Ansys/RMxprt ve Maxwell/2D yazılımı kullanılarak 100°, 120°, 140°, 160°, 180°, 200°, 220°, 240° ve 260° sargı adımları ile modellenmiş ve performans analizleri gerçekleştirilmiştir. Akım ve gerilim harmonik analizleri Maxwell/2D benzetim verilerinin Matlab ortamında işlenmesi ile elde edilmiştir. Maxwell/2D sonuçları maksimum verimin 200° yüksek adımlı konfigürasyonun tam sargı adımına göre %0.73 daha yüksek olduğunu göstermiştir. Maksimum çıkış gücü ve tork değerleri 240° yüksek adımlı konfigürasyon için tam sargı adımına göre sırasıyla %7.96 ve %7.45 daha yüksek gerçekleşmiştir. Sonuçlar hem düşük hem de yüksek adımlı kesirli sargıların akım ve gerilim dalga şekillerindeki harmonik eliminasyonu için kullanılabileceğini göstermiştir. Ancak, yüksek adımlı sargılar faz akımı harmoniklerini bastırmada daha iyi sonuç vermiştir. Faz akımı ve endüklenen gerilim THD değerleri, 260° yüksek adımlı ve 120° düşük adımlı konfigürasyonlar için tam sargı adımına göre sırasıyla %52.39 ve %74.6 daha düşük elde edilmiştir. Yüksek adımlı sargılar, az farkla da olsa, düşük adımlı sargılara göre daha yüksek verim, çıkış gücü ve tork sunmaktadır. Tüm harmonik bileşenleri ortadan kaldırmak için tek bir sargı adımı konfigürasyonunun olmadığı anlaşılmıştır. Bu nedenle, spesifik bir harmonik bileşeni ortadan kaldırmak için özel bir sargı adımı uygulanmalıdır.

Performance and Harmonic Analysis of a Three-Phase Induction Motor with Various Coil Pitch Configurations

In this work, analyses of the effect of full-, under-, and over-pitched stator winding configurations on the efficiency, output power, torque characteristics, and current and voltage harmonic components are carried out on a three-phase, squirrel cage induction motor. Performance analyses have been performed both via Ansys/RMxprt and Maxwell/2D software by modelling the stator winding with coil pitches of 100°, 120°, 140°, 160°, 180°, 200°, 220°, 240°, and 260°. Current and voltage harmonics analyses have been performed in Matlab using the data obtained from Maxwell/2D simulations. Maxwell/2D results showed that the maximum efficiency is attained at 200° over-pitched configuration, which is 0.73% higher than the efficiency when the motor is full-pitched. The maximum output power and torque are attained at 240° over-pitched configuration, which is 7.96% and 7.45% more than the power and torque obtained when the motor is full-pitched, respectively. Harmonic analysis results showed that both under-pitched and over-pitched coils can be used to eliminate harmonics in the current and voltage waveforms. However, over-pitched coils performed better in eliminating the phase current harmonics. The minimum total harmonic distortion (THD) of the phase current and induced voltage are reached at 260° over-pitched and 120° under-pitched configurations, which is 52.39% and 74.36% lower than the THD when the motor is full-pitched, respectively. Over-pitched coils provide slightly higher efficiency, output power, and torque than the under-pitched coils. There is no unique coil pitch configuration to eliminate all harmonic components. Therefore, in order to eliminate a specific harmonic component, a specific coil-pitch must be applied.

___

  • Arish, N., & Yaghobi, H. (2021). Effect of winding arrangement on the electromagnetic performance of HTS squirrel cage induction motor. 2021 29th Iranian Conference on Electrical Engineering (ICEE), Theran, Iran. doi:10.1109/ICEE52715.2021.9544360
  • Birbir, Y., & Nogay, H. S. (2007). Voltage and current harmonic variations in three-phase induction motors with different stator coil pitches. International Journal of Energy, 1(4).
  • Chapman, S. J. (2012). Electric machinery fundamentals (5th Ed.). New York, USA: Mcgraw-Hill.
  • Deshmukh, R., Moses, A. J., & Anayi, F. (2006a). Behavior of three-phase induction motors with variable stator coil winding pitch. Journal of Applied Physics, 99(8), 08R310. doi:10.1063/1.2170062
  • Deshmukh, R., Moses, A. J., & Anayi, F. (2006b). Voltage harmonic variation in three-phase induction motors with different coil pitches. Journal of Magnetism and Magnetic Materials, 304(2), e810–e812. doi:10.1016/j.jmmm.2006.03.005
  • Deshmukh, R. R. R. (2006). Voltage Harmonics Analysis and Efficiency of Three-phase Induction Motor with Change in Coil Pitch of the Stator Winding. UK: Cardiff University.
  • Deshmukh, R., Kumar, K. S., Joshi, P., & Subrahmanyam, K. (2020). Effect of chording on the efficiency of induction motor supplied by PWM inverter. IOP Conference Series: Materials Science and Engineering, 981(4), 42058. doi:10.1088/1757-899X/981/4/042058
  • Di, C., Petrov, I., & Pyrhönen, J. J. (2019). Design of a high-speed solid-rotor induction machine with an asymmetric winding and suppression of the current unbalance by special coil arrangements. IEEE Access, 7, 83175-83186. doi:10.1109/ACCESS.2019.2925131
  • Fitzgerald, A. E., Kingsley, C., & Umans, S. D. (2013). Electric machinery (6th Ed.). New York, USA: Mcgraw-Hill.
  • Gundogdu, T., Zhu, Z., & Mipo, J. (2020). Analysis of coil pitch in induction machines for electric vehicle applications. IET Electric Power Applications, 14(12), 2525–2536. doi:10.1049/iet-epa.2019.0980
  • Hua, W., Zhu, X., & Wu, Z. (2018). Influence of coil pitch and stator-slot/rotor-pole combination on back EMF harmonics in flux-reversal permanent magnet machines. IEEE Transactions on Energy Conversion, 33(3), 1330–1341. doi:10.1109/TEC.2018.2795000
  • Karnavar, P. H., & Jisha, V. R. (2020). Harmonic reduction and performance improvement of BLDC motor using a selective harmonic elimination PWM based controller. 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Jaipur, India. doi:10.1109/PEDES49360.2020.9379727
  • Li, A., Jiang, D., Sun, J., Liu, Z., & Lee, C. H. T. (2022). Unified vector torque control for reluctance motor with different coil pitch. IEEE Transactions on Industrial Electronics, 70(6), 5527-5536. doi:10.1109/TIE.2022.3192600
  • Liu, G., Chen, B., Wang, K., & Song, X. (2018). Selective current harmonic suppression for high-speed PMSM based on high-precision harmonic detection method. IEEE Transactions on Industrial Informatics, 15(6), 3457–3468. doi:10.1109/TII.2018.2873652
  • Lu, J., Yang, J., & Ma, Y. (2015). Research on harmonic compensation for flux and current of permanent magnet synchronous motor. 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Busan, Korea (South). doi:10.1109/AIM.2015.7222600
  • Silva, A. M., Ferreira, F. J. T. E., Falcão, G., & Rodrigues, M. (2018). Novel method to minimize the air-gap MMF spatial harmonic content in three-phase windings. 2018 XIII International Conference on Electrical Machines (ICEM), Alexandroupoli, Greece. doi:10.1109/ICELMACH.2018.8507206
  • Srinivasan, J., Selvaraj, K., Chitrarasu, J., & Resmi, R. (2016). Design and analysis of squirrel cage induction motor in short pitch and full pitch winding configurations using FEA. 2016 International Conference on Emerging Technological Trends (ICETT), Kollam, India. doi:10.1109/ICETT.2016.7873759
  • Tessarolo, A. (2008). Design criteria for stator winding coil pitch choice in AC inverter-fed multi-phase motors. 4th IET International Conference on Power Electronics, Machines and Drives (PEMD 2008), York. doi:10.1049/cp:20080610
  • Yetgin, A. G., Turan, M., Cevher, B., Çanakoğlu, A. İ., & Ayhan, G. Ü. N. (2019). Squirrel cage induction motor design and the effect of specific magnetic and electrical loading coefficient. International Journal of Applied Mathematics Electronics and Computers, 7(1), 1-8. doi:10.18100/ijamec.461795
Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1300-5413
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1995
  • Yayıncı: Van Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü