Cu2FeSnS4 Kalkojenit Filmlerin Optik ve Morfolojik Özellikleri

P-tipi Cu2FeSnS4 (CFTS) ve Cu2ZnSnS4 (CZTS) kuaterner kalkojenit filmler, 30 ve 40 sccm kükürt akışıyla ilgili cam alt-tabakalar üzerinde döndürmeli kaplama yöntemiyle büyütülmüştür. Elde edilen numunelerin fiziksel özellikleri, X-ışını kırınımı (XRD) ölçüm sistemi, taramalı elektron mikroskobu (SEM), atomik kuvvet mikroskobu (AFM) ve ultraviyole görünür (Uv-vis) spektrofotometre ölçüm sistemi ile araştırılarak ince filmlerin biriktirme parametrelerinin etkisi incelenmiştir. Numunelerin kristal boyutu, dislokasyon yoğunluğu ve gerinim değeri gibi kristal parametreleri biriktirme parametrelerine bağlı olarak değişmektedir. XRD sonuçları, (112) pik yönelimi için yaklaşık 50 nm maksimum kristal boyutu ile kuaterner kalkojenit CFTS'nin kristal kalitesinde bir gelişmeyi gösterir. SEM görüntüleri hem XRD hem de AFM görüntüleri ile teyit edilen, kükürt akışındaki artışla parçacık boyutunun değiştiğini göstermektedir. Örneklerin absorpsiyon ve enerji bant aralığı değerinin kükürt akışının etkisini değiştirdiği ve 40 sccm için CZTS filmi, Uv-vis bölgesindeki tüm numunelerden daha güçlü absorpsiyon göstermiştir. Örneklerin bant aralığı değerleri, H2S gazında tavlanan CZTS (30 sccm), CZTS (40 sccm), CFTS (30 sccm) ve CFTS (40 sccm) filmler için sırasıyla 1.51,1.53,1.82 ve 1.91 eV olarak hesaplanmıştır.

Optical and Morphological Properties of Cu2FeSnS4 Chalcogenide Films

P-type Cu2FeSnS4 (CFTS) and Cu2ZnSnS4 (CZTS) quaternary chalcogenide films have been grown by the method of spin coating on glass substrates relate to 30 and 40 sccm sulfur flux. Physical properties of obtained samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and ultraviolet visible spectroscopy (UV-Vis) to see the effect of deposition parameters on the thin film. The crystal parameters including crystal size, dislocation density and strain value of the samples were changed related to the deposition parameters. XRD results indicated an improvement of the crystalline quality of quaternary chalcogenide CFTS with a maximum crystal size of about 50 nm for (112) peak orientation. SEM images illustrated that the particle size was changed with an increase in the flux of sulfur, which was confirmed with both XRD and AFM images. It was seen that the absorption and energy band gap value of the samples changed the effect of sulfur flux and CZTS film for 40 sccm exhibited more strong absorption all samples in the UV-Vis region. The band gap values of the samples were calculated 1.51, 1.53, 1.82 and 1.91 eV for CZTS (30 sccm), CZTS (40 sccm), CFTS (30 sccm) and CFTS (40 sccm) films annealed H2S gas, respectively.

___

  • Adelifard, M. (2016). Preparation and characterization of Cu2FeSnS4 quaternary semiconductor thin films via the spray pyrolysis technique for photovoltaic applications. Journal of Analytical and Applied Pyrolysis, 122, 209-215. doi:10.1016/j.jaap.2016.09.022
  • Ansari, M. Z., Singh, S., & Khare, N. (2019). Visible light active CZTS sensitized CdS/TiO2 tandem photoanode for highly efficient photoelectrochemical hydrogen generation. Solar Energy, 181, 37-42. doi:10.1016/j.solener.2019.01.067
  • Ava, C. A., Ocak, Y. S., Asubay, S., & Celik, O. (2021). The influence of Ge substitution and H2S annealing on Cu2ZnSnS4 thin films. Optical Materials, 121, 111565. doi:10.1016/j.optmat.2021.111565
  • Cullity, B. D. (1956). Elements of X-ray diffraction: Boston, USA: Addison-Wesley. ISBN-0201012308.
  • Domain, C., Laribi, S., Taunier, S., & Guillemoles, J. F. (2003). Ab initio calculation of intrinsic point defects in CuInSe2. Journal of Physics and Chemistry of Solids, 64(9-10), 1657-1663. doi:10.1016/S0022-3697(03)00208-7
  • Dong, C., Ashebir, G. Y., Qi, J., Chen, J., Wan, Z., Chen, W., & Wang, M. (2018). Solution-processed Cu2FeSnS4 thin films for photovoltaic application. Materials Letters, 214, 287-289. doi:10.1016/j.matlet.2017.12.032
  • El-Hagary, M., Emam-Ismail, M., Shaaban, E., & El-Taher, A. (2012). Effect of γ-irradiation exposure on optical properties of chalcogenide glasses Se70S30− xSbx thin films. Radiation Physics and Chemistry, 81(10), 1572-1577. doi:10.1016/j.radphyschem.2012.05.012
  • Elsaeedy, H. I. (2019). Growth, structure, optical and optoelectrical characterizations of the Cu2NiSnS4 thin films synthesized by spray pyrolysis technique. Journal of Materials Science: Materials in Electronics, 30(13), 12545-12554. doi:10.1007/s10854-019-01615-3
  • Friedlmeier, T. M., Jackson, P., Bauer, A., Hariskos, D., Kiowski, O., Wuerz, R., & Powalla, M. (2015). Improved photocurrent in Cu(In, Ga)Se2 solar cells: from 20.8% to 21.7% efficiency with CdS buffer and 21.0% Cd-free. IEEE Journal of Photovoltaics, 5(5), 1487-1491. doi:10.1109/PVSC.2015.7356152
  • Guan, H., Shen, H., Jiao, B., & Wang, X. (2014). Structural and optical properties of Cu2FeSnS4 thin film synthesized via a simple chemical method. Materials Science in Semiconductor Processing, 25, 159-162. doi:10.1016/j.mssp.2013.10.021
  • Hannachi, A., Oueslati, H., Khemiri, N., & Kanzari, M. (2017). Effects of sulfurization on the optical properties of Cu2ZnxFe1-xSnS4 thin films. Optical Materials, 72, 702-709. doi:10.1016/j.optmat.2017.07.031
  • Jackson, P., Hariskos, D., Lotter, E., Paetel, S., Wuerz, R., Menner, R., Wischmann, W., & Powalla Prog, M., (2011). New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Photovoltaics, 19, 894-897. doi:10.1002/pip.1078
  • Khadka, D. B., & Kim, J. (2015). Structural, optical and electrical properties of Cu2FeSnX4 (X= S, Se) thin films prepared by chemical spray pyrolysis. Journal of Alloys and Compounds, 638, 103-108. doi:10.1016/j.jallcom.2015.03.053
  • Krishnaiah, M., Mishra, R. K., Seo, S. G., Jin, S. H., & Park, J. T. (2019). Highly crystalline, large grain Cu2CoSnS4 films with reproducible stoichiometry via direct solution spin coating for optoelectronic device application. Ceramics International, 45(9), 12399-12405. doi:10.1016/j.ceramint.2019.03.167
  • Madhusudanan, S. P., Mohanta, K., & Batabyal, S. K. (2019). Electrical bistability and memory switching phenomenon in Cu2FeSnS4 thin films: role of pn junction. Journal of Solid State Electrochemistry, 23(5), 1307-1314. doi:10.1007/s10008-019-04213-9
  • Meng, X., Deng, H., He, J., Sun, L., Yang, P., & Chu, J. (2015a). Synthesis, structure, optics and electrical properties of Cu2FeSnS4 thin film by sputtering metallic precursor combined with rapid thermal annealing sulfurization process. Materials Letters, 151, 61-63. doi:10.1016/j.matlet.2015.03.046
  • Meng, X., Deng, H., Sun, L., Yang, P., & Chu, J. (2015b). Sulfurization temperature dependence of the structural transition in Cu2FeSnS4-based thin films. Materials Letters, 161, 427-430. doi:10.1016/j.matlet.2015.09.013
  • Meng, X., Deng, H., Zhang, Q., Sun, L., Yang, P., & Chu, J. (2017). Investigate the growth mechanism of Cu2FeSnS4 thin films by sulfurization of metallic precursor. Materials Letters, 186, 138-141. doi:10.1016/j.matlet.2016.10.002
  • Miao, X., Chen, R., & Cheng, W. (2017). Synthesis and characterization of Cu2FeSnS4 thin films prepared by electrochemical deposition. Materials Letters, 193, 183-186. doi:10.1016/j.matlet.2017.01.099
  • Mokurala, K., Bhargava, P., & Mallick, S. (2014). Single step synthesis of chalcogenide nanoparticles Cu2ZnSnS4, Cu2FeSnS4 by thermal decomposition of metal precursors. Materials Chemistry and Physics, 147(3), 371-374. doi:10.1016/j.matchemphys.2014.06.049
  • Monsefi, M., & Kuo, D. H. (2014). Influence of Mg doping on electrical properties of Cu(In, Ga)Se2 bulk materials. Journal of Alloys and Compounds, 582, 547-551. doi:10.1016/j.jallcom.2013.08.101
  • Nefzi, C., Souli, M., Cuminal, Y., & Kamoun-Turki, N. (2018). Effect of sulfur concentration on structural, optical and electrical properties of Cu2FeSnS4 thin films for solar cells and photocatalysis applications. Superlattices and Microstructures, 124, 17-29. doi:10.1016/j.spmi.2018.09.033
  • Nefzi, C., Souli, M., Cuminal, Y., & Kamoun-Turki, N. (2020a). Effect of sprayed volume on physical properties of Cu2FeSnS4 thin films and an efficient p-type Cu2FeSnS4/n-type F-doped SnO2 heterojunction. Journal of Physics and Chemistry of Solids, 144, 109497. doi:10.1016/j.jpcs.2020.109497
  • Nefzi, C., Souli, M., Jeyadevan, B., & Kamoun-Turki, N. (2020b). Effect of substrate temperature on physical properties of Cu2FeSnS4 thin films for photocatalysis applications. Materials Science and Engineering: B, 254, 114509. doi:10.1016/j.mseb.2020.114509
  • Nilange, S. G., Patil, N. M., & Yadav, A. A. (2019). Growth and characterization of spray deposited quaternary Cu2FeSnS4 semiconductor thin films. Physica B: Condensed Matter, 560, 103-110. doi:10.1016/j.physb.2019.02.008
  • Prabhakar, R. R., Huu Loc, N., Kumar, M. H., Boix, P. P., Juan, S., John, R. A., Wong, L. H. (2014). Facile water-based spray pyrolysis of earth-abundant Cu2FeSnS4 thin films as an efficient counter electrode in dye-sensitized solar cells. ACS Applied Materials & Interfaces, 6(20), 17661-17667. doi:10.1021/am503888v
  • Rudisch, K., Espinosa‐García, W. F., Osorio‐Guillén, J. M., Araujo, C. M., Platzer‐Björkman, C., & Scragg, J. J. (2019). Structural and Electronic Properties of Cu2MnSnS4 from Experiment and First‐Principles Calculations. Physica Status Solidi (b), 256(7), 1800743. doi:10.1002/pssb.201800743
  • Shaikh, J., Pawar, R. C., Devan, R. S., Ma, Y.-R., Salvi, P. P., Kolekar, S. S., & Patil, P. S. (2011). Synthesis and characterization of Ru doped CuO thin films for supercapacitor based on Bronsted acidic ionic liquid. Electrochimica Acta, 56(5), 2127-2134. doi:10.1016/j.electacta.2010.11.046
  • Tanaka, T., Kawasaki, D., Nishio, M., Guo, Q., & Ogawa, H. (2006). Fabrication of Cu2ZnSnS4 thin films by co‐evaporation. Physica Status Solidi C, 3(8), 2844-2847. doi:10.1002/pssc.200669631 Tauc, J. (2012). Amorphous and liquid semiconductors. Newyork, USA: Springer. doi:10.1007/978-1-4615-8705-7
  • Tiong, V. T., Zhang, Y., Bell, J., & Wang, H. (2014). Phase-selective hydrothermal synthesis of Cu2ZnSnS4 nanocrystals: The effect of the sulphur precursor. Cryst Eng Comm, 16(20), 4306-4313. doi:10.1039/C3CE42606H Urbach, F. (1953). The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Physical Review, 92(5), 1324. doi:10.1103/PhysRev.92.1324
  • Vanalakar, S. A., Patil, P. S., & Kim, J. H. (2018). Recent advances in synthesis of Cu2FeSnS4 materials for solar cell applications: A review. Solar Energy Materials and Solar Cells, 182, 204-219. doi:10.1016/j.solmat.2018.03.021
  • Wang, W., Shen, H., Yao, H., & Li, J. (2014). Preparation and properties of Cu2FeSnS4 nanocrystals by ultrasound-assisted microwave irradiation. Materials Letters, 125, 183-186. doi:10.1016/j.matlet.2014.03.166
  • Wang, S., Ma, R., Wang, C., Li, S., & Wang, H. (2017). Fabrication and photoelectric properties of Cu2FeSnS4 (CFTS) and Cu2FeSn(S, Se)4 (CFTSSe) thin films. Applied Surface Science, 422, 39-45. doi:10.1016/j.apsusc.2017.05.244
  • Zhou, J., Yu, S., Guo, X., Wu, L., & Li, H. (2019). Preparation and characterization of Cu2FeSnS4 thin films for solar cells via a co-electrodeposition method. Current Applied Physics, 19(2), 67-71. doi:10.1016/j.cap.2018.10.014
Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1300-5413
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1995
  • Yayıncı: Van Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü