Astragalus Gummifer (Günizer)’in Toprak Üstü Kısımlarının Liyofilize Su Ekstresi Antioksidan Aktivitesi

Araştırmalar, koroner kalp hastalığı ve kanser gibi yaşa bağlı hastalıklar ile meyve ve sebze tüketimi arasında ters bir korelasyon olduğunu göstermiştir. Bitkilerden elde edilen doğal antioksidanların olası sağlık yararları dikkat çekmekte ve bunlarla ilgili araştırmalar artmaktadır. Fabaceae familyasının en büyük cinsi Astragalus L.’dir ve Türkiye florasında 224 endemik türünün varlığı tespit edilmiştir. Astragalus türleri Türkiye’nin birçok bölgesinde yetişen ve geleneksel tıpta kullanılan bitkiler olduğu için bu türlerin biyolojik aktivitelerinin değerlendirilmesi bilimsel açıdan önem taşımaktadır. Bu çalışmada Astragalus gummifer’in antioksidan özellikleri araştırıldı. Toprak üstü kısımlarından elde edilen liyofilize su ekstresinin antioksidan kapasitesi ferrik iyonlar (Fe3+) indirgeme, KUPRAK, FRAP, DPPH• ve ABTS•+ giderici antioksidan yöntemleri ile değerlendirildi. Astragalus gummifer’in ABTS•+ giderme aktivitesi ölçüldü ve IC50 değeri 10.04 μg/mL olarak bulundu. Sonuçlar Astragalus gummifer’in ABTS•+ giderme aktivitesinin α-tokoferole (8.058 μg/mL) yakın olduğunu gösterdi. Bu araştırma, Astragalus gummifer’in konu olacağı daha ileri fitokimyasal araştırmaları için bir temel oluşturmaktadır.

Antioxidant Activity of Lyophilized Water Extract of Aerial Parts of Astragalus Gummifer (Günizer)

Studies have shown an inverse correlation between age-related illnesses such as coronary heart disease and cancer, and fruit and vegetable consumption. Given the possible health benefits of natural antioxidants from plants, the research on the subjects has increased. 224 endemic species of Astragalus L., the largest genus of the Fabaceae family, were identified in the flora of Turkey. Since Astragalus species are plants grown in many regions of Turkey and used in traditional medicine, it is scientifically important to evaluate the biological activities of these species. In this study, we investigated the antioxidant properties of Astragalus gummifer. The antioxidant capacity of the lyophilized water extract obtained from the aerial parts was evaluated by ferric ions (Fe3+) reduction, KUPRAK, FRAP, DPPH• and ABTS+• scavenging antioxidant methods. ABTS•+ scavenging activity of Astragalus gummifer was measured and IC50 value was found to be 10.04 μg/mL. The results showed that ABTS•+ scavenging activity of Astragalus gummifer is close to α-tocopherol (8.058 μg/mL). This research provides a basis for further phytochemical studies on Astragalus gummifer.

___

  • Alhafez, A., Savci, A., Alan, Y., Söylemez, R., & Kilic, A. (2022). Preparation of Cu(II), Ni(II), Ti(IV), VO(IV), and Zn(II) metal complexes derived from novel vic-dioxime and investigation of their antioxidant and antibacterial activities. Chemistry and Biodiversity, 19(3), e202100768. doi:10.1002/cbdv.202100768
  • Amiri, M. S., Joharchi, M. R., Nadaf, M., & Nasseh, Y. (2020). Ethnobotanical knowledge of Astragalus spp.: The world’s largest genus of vascular plants. Avicenna Journal of Phytomedicine, 10(2), 128–142.
  • Apak, R., Güçlü, K., Özyürek, M., Esin Karademir, S., & Erçaǧ, E. (2006). The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. International Journal of Food Sciences and Nutrition, 57(5–6), 292–304. doi:10.1080/09637480600798132
  • Asgarpanah, J., Motamed, S. M., Farzaneh, A., Ghanizadeh, B., & Tomraee, S. (2011). Antioxidant activity and total phenolic and flavonoid content of Astragalus squarrosus Bunge. African Journal of Biotechnology, 10(82), 19176–19180.
  • Aslanipour, B., Gülcemal, D., Nalbantsoy, A., Yusufoglu, H., & Bedir, E. (2017). Secondary metabolites from Astragalus karjaginii BORISS and the evaluation of their effects on cytokine release and hemolysis. Fitoterapia, 122(June), 26-33. doi:10.1016/j.fitote.2017.08.008
  • Bagheri, S. M., Keyhani, L., Heydari, M., Dashti-R, M. H. (2015). Antinociceptive activity of Astragalus gummifer gum (gum tragacanth) through the adrenergic system : A in vivo study in mice. Journal of Ayurveda & Integrative Medicine, 6(1), 19-23.
  • Bingol, M. N., & Bursal, E. (2018). LC-MS/MS analysis of phenolic compounds and in vitro antioxidant potential of stachys lavandulifolia Vahl. var. brachydon Boiss. International Letters of Natural Sciences, 72, 28–36. doi:10.56431/p-5vckk2
  • Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199-1200. doi:10.1038/1811199a0
  • Bursal, E., Aras, A., Kılıç, Ö., Taslimi, P., Gören, A. C., & Gülçin, İ. (2019). Phytochemical content, antioxidant activity, and enzyme inhibition effect of Salvia eriophora Boiss. & Kotschy against acetylcholinesterase, α-amylase, butyrylcholinesterase, and α-glycosidase enzymes. Journal of Food Biochemistry, 43(3), 1-13. doi:10.1111/jfbc.12776
  • Bursal, E., Aras, A., Doğru, M., & Kılıç, Ö. (2021). Phenolic content, antioxidant potentials of Saponaria prostrata endemic plant. International Journal of Life Sciences and Biotechnol. International Journal of Life Sciences and Biotechnology, 5(1), 1-8. doi:10.38001/ijlsb.989172
  • Butkute, B., Dagilyte, A., Benetis, R., Padarauskas, A., Cesevičiene, J., Olšauskaite, V., & Lemežiene, N. (2018). Mineral and phytochemical profiles and Antioxidant activity of herbal material from two temperate astragalus species. BioMed Research International, 2018, 6318630. doi:10.1155/2018/6318630
  • Eruygur, N., Koçyiğit, U. M., Taslimi, P., Ataş, M., Tekin, M., & Gülçin, I. (2019). Screening the in vitro antioxidant, antimicrobial, anticholinesterase, antidiabetic activities of endemic Achillea cucullata (Asteraceae) ethanol extract. South African Journal of Botany, 120, 141–145. doi:10.1016/j.sajb.2018.04.001
  • Gulcin, I., Tel, A. Z., & Kirecci, E. (2008). Antioxidant, antimicrobial, antifungal, and antiradical activities of Cyclotrichium Niveum (BOISS.) Manden and Scheng. International Journal of Food Properties, 11(2), 450–471. doi:10.1080/10942910701567364
  • Gulcin, I. (2020). Antioxidants and antioxidant methods: An updated overview. Archives of Toxicology, 94, 651-715. doi:10.1007/s00204-020-02689-3
  • Gülcemal, D., Alankuş-Çalişkan, Ö., Perrone, A., Özgökçe, F., Piacente, S., & Bedir, E. (2011). Cycloartane glycosides from Astragalus aureus. Phytochemistry, 72(8), 761-768. doi:10.1016/j.phytochem.2011.02.006
  • Gülçin, İ. (2012). Antioxidant activity of food constituents: An overview. Archives of Toxicology, 86(3), 345-391. doi:10.1007/s00204-011-0774-2
  • Haşimi, N., Ertaş, A., Yılmaz, M. A., Boğa, M., Temel, H., Demirci, S., Özden, T. Y., Yener, İ., & Kolak, U. (2017). LC-MS/MS and GC-MS analyses of three endemic Astragalus species from Anatolia towards their total phenolic-flavonoid contents and biological activities. Biological Diversity and Conservation, 10(1), 18-30.
  • Horo, I., Bedir, E., Masullo, M., Piacente, S., Özgökçe, F., & Alankuş-Çalişkan, Ö. (2012). Saponins from Astragalus hareftae (NAB.) SIRJ. Phytochemistry, 84, 147–153. doi:10.1016/j.phytochem.2012.07.015
  • Huang, D., Boxin, OU., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry. 53(6), 1841-1856. doi:10.1021/jf030723c
  • Huo, L., Lu, R., Li, P., Liao, Y., Chen, R., Deng, C., Lu, C., Wei, X., & Li, Y. (2011). Antioxidant activity, total phenolic, and total flavonoid of extracts from the stems of jasminum nervosum lour. Grasas y Aceites, 62(2), 149-154. doi:10.3989/gya.066810
  • Jun, Y. M., Kim, E. H., Lim, J. J., Kim, S. H., & Kim, S. H. (2012). Variation of phenolic compounds contents in cultivated astragalus membranaceus. Korean Journal of Medicinal Crop Science, 20(6), 4447–453. doi: 10.7783/KJMCS.2012.20.6.447
  • Karimi, S., Salehi, H., & Ashiri, F. (2016). Tragacanth , a novel and cheap gelling agent in carnation and miniature rose tissue culture media. Journal of Ornamental Plants, 6(4), 253–260.
  • Keskin, C., Özen, H. Ç., Toker, Z., Kızıl, G., Kızıl, M. (2018). Astragalus diphtherites FENZL var. diphtherites ve Astragalus gymnalopecias Rech. Fıl’ in gövde ve kök kısımlarından farklı çözücüler ile elde edilen özütlerin in vitro antioksidan ve antimikrobiyal özelliklerinin belirlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 21(2), 157-166. doi:10.18016/ksudobil.322478
  • Kızıltaş, H., Bingöl, Z., Gören, A. C., Pinar, S. M., Alwasel, S. H., & Gülçin, İ. (2021). LC-HRMS profiling of phytochemicals, antidiabetic, anticholinergic and antioxidant activities of evaporated ethanol extract of Astragalus brachycalyx Fischer. Journal of Chemical Metrology, 15(2), 135–151. doi:10.25135/jcm.62.2107.2155
  • Kora, A. J., & Arunachalam, J. (2012). Green fabrication of silver nanoparticles by Gum Tragacanth (Astragalus gummifer): A dual functional reductant and stabilizer. Journal of Nanomaterials, 2012, 869765. doi:10.1155/2012/869765
  • Kose, L. P., & Gulcin, İ. (2021). Evaluation of the antioxidant and antiradical properties of some phyto and mammalian lignans. Molecules, 26(23), 7099. doi:10.3390/molecules26237099
  • Köksal, E., & Gülçin, I. (2008). Antioxidant activity of cauliflower (Brassica oleracea L.). Turkish Journal of Agriculture and Forestry, 32(1), 65–78.
  • Mabberley, D. J. (1997). The Plant-book: A Portable Dictionary of the Vascular Plants. Cambridge, UK: Cambridge University Press.
  • MacDonald-Wicks, L. K., Wood, L. G., & Garg, M. L. (2006). Methodology for the determination of biological antioxidant capacity in vitro: A review. Journal of the Science of Food and Agriculture, 86(13), 2046–2056. doi:10.1002/jsfa.2603
  • Meir, S., Kanner, J., Akiri, B., & Philosoph-Hadas, S. (1995). Determination and Involvement of Aqueous Reducing Compounds in Oxidative Defense Systems of Various Senescing Leaves. Journal of Agricultural and Food Chemistry, 43(7), 1813-1819. doi:10.1021/jf00055a012
  • Murathan, Z. T., & Özdinç, M. (2018). Ardahan ve Elazığ illerinde yetişen Anchusa azurea Miller var. Azurea bitkisinin biyoaktif bileşenleri ve antioksidan kapasitesi üzerine bir araştırma. Kahramanmaraş Sütçü İmam Üniversitesi Doğa Bilimleri Dergisi, 21(4), 529-534. doi:10.18016/ksudobil.362296
  • Oyaizu, M. (1986). Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics, 44(6), 307-315. doi:10.5264/eiyogakuzashi.44.307
  • Park, C. H., Yeo, H. J., Baskar, T. B., Park, Y. E., Park, J. S., Lee, S. Y., & Park, S. U. (2019). In vitro antioxidant and antimicrobial properties of flower, leaf, and stem extracts of Korean Mint. Antioxidants, 8(3), 75. doi:10.3390/antiox8030075
  • Ríos, J. L., & Waterman, P. G. (1997). A review of the pharmacology and toxicology of Astragalus. Phytotherapy Research, 11(6), 411-418. doi:10.1002/(SICI)1099-1573(199709)11:6%3C411::AID-PTR132%3E3.0.CO;2-6
  • Taslimi, P., Köksal, E., Gören, A. C., Bursal, E., Aras, A., Kılıç, Ö., Alwasel, S., & Gülçin, İ. (2020). Anti-Alzheimer, antidiabetic and antioxidant potential of Satureja cuneifolia and analysis of its phenolic contents by LC-MS/MS. Arabian Journal of Chemistry, 13(3), 4528-4537. doi:10.1016/j.arabjc.2019.10.002
Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1300-5413
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1995
  • Yayıncı: Van Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü