Sismotektoniğe ve sismik boşluğa DInSAR yaklaşımı: Kuzey Anadolu Fay Zonunun Erzincan havzası kesimi (doğu Türkiye)

InSAR (İnterferometrik Sentez Açılımlı Radar) ve GNSS (Küresel Navigasyon Uydu Sistemi) gibi uzay jeodezisi tekniklerinin sağladığı verilerle üst kabuk ve litosferin diğer katmanlarının fiziksel özellikleri ve reolojisine yönelik çok sayıda model geliştirilmiştir. Bu modeller yine deprem tahminlerine yaklaşımda bulunmak üzere intersismik döneme yönelik InSAR çalışmalarında kullanılmaktadır. Ancak herhangi bir fay segmentinde gerilimleri boşaltan büyük depremler, birkaç yüz ile birkaç bin yıllık bir süre aralığında meydana gelirken, genellikle en çok on yıllık bir zaman aralığını kapsayan deformasyon gözlemleri tam bir deprem çevriminde oldukça küçük bir zaman aralığını temsil ederler. Bu kısa süreli deformasyon gözlemlerini sismik tehlikede kullanmak için, fay zonlarının uzayda ve zamanda nasıl deforme olduğuna dair daha iyi modellere ihtiyaç duyulur. Dolayısıyla, tektonik havzalar ve fay zonlarındaki ana segmentler ile diğer yapısal unsurlar etrafındaki deformasyonlara odaklanan ve aynı zamanda gözlemlenen deformasyonlar ile bu yapısal unsurların arasındaki ilişkiyi de ele alan InSAR çalışmaları, deprem tahminleri açısından oldukça önem arz edebilir. Bu bağlamda makalemizde, Kuzey Anadolu Fayı (KAF) üzerinde bulunan Erzincan havzasının tektonik özelliklerini, InSAR ile belirlenmiş deformasyon alanları ile birlikte ele alarak değerlendirmeyi düşündük. Buna yönelik olarak, InSAR tekniğinin çok büyük alanları ve yüzlerce interferogram analizini kapsayan modern kullanımı yerine, havza içine odaklanmış az sayıda interferogramla belirlenen deformasyon alanlarının yapısal jeoloji açısından değerlendirildiği başlangıçtaki eski usül kullanımını tercih ettik. Erzincan tektonik çökme havzasında son yüzyılda iki yıkıcı deprem meydana gelmiştir (1939, M: 7.8 - 8.2 ve 1992, M:6.8). Önceki çalışmalar, havzanın KAF zonu boyunca çek-ayır tipinde bir açılmanın sonucu olarak oluştuğunu göstermektedir. Ovacık fayı (OF) aktivitesi havzayı genişletmektedir. Havzanın doğusunda KAF boyunca en az 75 km uzanan bir sismik boşluk zonu bulunmaktadır. Bu sismik boşluk hattının, batıda yaklaşık 22 km uzunluğundaki Sansa ve doğuda yaklaşık 53 km uzunluğundaki Yedisu olmak üzere, iki ana segmentten meydana geldiği düşünülmektedir. Çalışmamızda, 13 Mart 1992 tarihindeki Erzincan depremi (M = 6.8) sonrasındaki yaklaşık 2.5 yıllık postsismik bir dönem (1993-1995) için, ERS-1 uydusunun SAR verilerinden Farksal İnterferometrik SAR (DInSAR) tekniği ile üretilen bir interferogramda belirlenen deformasyon alanlarını, havzanın yapısal jeoloji unsurlarıyla karşılaştırdık. İnterferometrik deformasyon bulguları Erzincan ovasının kenarlarına yakın tektonik hatlar üzerinde belirginleşmişlerdir. Dikey yön bileşenlerinde çökmeye karşılık gelen yerdeğiştirme miktarları, havzanın kuzey kenarı çevresinde, güney kenarındakilerden daha yüksektir. Havzanın kuzey kenarı ve KAF zonu boyunca, Erzincan kent merkezinin kuzeybatısı ve kuzeyinde gelişen deformasyonlar, doğusu ve kuzeydoğusunda gelişen deformasyonlara göreceyle daha düşük hız ve seviyelerdedir. Bu, her iki alanın birlikte çökerlerken, göreceyle daha yavaş çöken kuzeybatı kesiminde transpresif zonların ve push-up yapılarının gelişmesine ışık tutmaktadır. İnterferogramda, Erzincan ovasının yaklaşık doğu çıkışından itibaren deformasyon gelişimi gözlenmemektedir. Bu nedenle havzanın doğusuna doğru ilerlerken sismik boşluk zonuna yaklaştıkça, KAF segmentinin daha düşük kayma miktarlarına sahip olan bir davranış sergilediği düşünülmüştür. Çalışmamızda ayrıca, 1939 Erzincan depreminin (M: 8.0) Ekşisu (Erzincan) - Bahçe Köyü (Koyulhisar, Sivas) arasında 185 km uzunluğundaki yüzey kırığı haritalamasını içeren, oldukça zor şartlar altında üretilmiş hayranlık ve saygı uyandıran bilim-antik özellikteki eski bir saha raporuna (Stchepinsky vd., 1940) kısaca yer verilmiştir.

___

  • Ambraseys, N.N.,1975. Studies in historical seismicity and tectonics. In: Geodynamics of today, The Royal Soc. London, 7-16.
  • Arpat, E. and Şaroğlu, F., 1972. The East Anatolian fault system: Thoughts on its development (in Turkish). Maden Tetkik Arama Ens. Derg., 78, 33-39.
  • Barbot, S., Lapusta, N. and Avouac, J.-P., 2012. Under the hood of the earthquake machine: Toward predictive modeling of the seismic cycle. Science, 336 (6082), 707-710.
  • Barka, A., 1992. The North Anatolian fault zone. Annales Tectonicae, spec. issue, suppl. to vol. VI, 164-195.
  • Barka, A., 1996. Slip distribution along the North Anatolian Fault associated with the large earthquakes of the period 1939 to 1967, 1996. Bull. Seism.Soc. Am., vol. 86, no. 5, pp. 1238-1254.
  • Barka, A.A. and Gülen, L., 1989. Complex evolution of the Erzincan basin (eastern Turkey). J. Struct. Geol., Vol. 11, No. 3: 275-283.
  • Dewey, J.W., 1976. 1976. Seismicity of Northern Anatolia, Bull. Seism. Soc. Am., 66, 843-868.
  • Bürgmann, R., Ergintav, S., Segall, P., Hearn, E.H., McClusky, S., Reilinger, R.E., Woith, H. and Zschau, J., 2002. Time-dependent distributed afterslip on and deep below the Izmit earthquake rupture. Bulletin of the Seismological Society of America, 92 (1), 126-137.
  • Cakir, Z., Ergintav, S., Akoğlu, A.M., Çakmak, R., Tatar, O. and Meghraoui, M., 2014. InSAR velocity field across the North Anatolian Fault (eastern Turkey): Implications for the loading and release of interseismic strain accumulation. Journal of Geophysical Research: Solid Earth, 119, 7934–7943, doi:10.1002/2014JB011360.
  • Cavalié, O., and Jónsson, S., 2014. Block-like plate movements in Eastern Anatolia observed by InSAR. Geophys. Res. Lett., 41, 26–31, doi:10.1002/2013GL058170.
  • Chorowicz J., Luxey P., Rudant J.-P., Lyberis N., Yürür T., Gündoğdu M.N., 1995, Slip-motion estimation along the Ovacık fault near Erzincan (Turkey) using ERS-1 Radar Image: evidence of important deformation inside the Turkish Plate. Remote Sensing Environment, 52 (1), 66-70.
  • Christopher, S., Takeuchi, C.S. and Fialko, Y., 2012. Dynamic models of interseismic deformation and stress transfer from plate motion to continental transform faults. Journal of Geophysical Research: Solid Earth, 117 (B05403), 1-16, doi:10.1029/2011JB009056.
  • Di Giacomo, D., Bondár, I., Storchak, D.A., Engdahl, E.R., Bormann, P. and Harris, J., 2015. ISC-GEM: Global Instrumental Earthquake Catalogue (1900-2009): III. Re-computed MS and mb, proxy MW, final magnitude composition and completeness assessment, Phys. Earth Planet. Int., 239, 33-47, doi: 10.1016/j.pepi.2014.06.005.
  • Di Giacomo, D., Engdahl, E.R. and Storchak, D.A., 2018. The ISC-GEM Earthquake Catalogue (1904–2014): status after the Extension Project, Earth Syst. Sci. Data, 10, 1877-1899, doi: 10.5194/essd-10-1877.
  • Ergintav, S., McClusky, S., Hearn, E., Reilinger, R., Cakmak, R., Herring, T., Ozener, H., Lenk, O. and Tari, E., 2009. Seven years of postseismic deformation following the 1999, M = 7.4 and M = 7.2, Izmit-Düzce, Turkey earthquake sequence. Journal of Geophysical Research (Solid Earth), 114, B07403, 1-19, doi:10.1029/2008JB006021.
  • Fuenzalida, H., Dorbath, L., Cisternas, A., Eyidoğan, H., Barka, A., Rivera, L., Haessler, H., Philip, H and Lyberis, N., 1997. Mechanism of the 1992 Erzincan earthquake and its aftershocks, tectonics of the Erzincan basin and decoupling on the North Anatolian fault.Geophys. Int. J., 129, 1-28, 1997.
  • Gencoğlu, S., İnan, E. and Güler, H., 1990.The earthquake hazard in Turkey, Publ. Cham.Geophys. Eng., Ankara, 701 p.
  • Goldstein, R.M., Engelhardt, H., Kamb, B. and Frolich, R.M., 1993. Satellite radar interferometry for monitoring ice sheet motion: Application to an Antarctic ice stream. Science, vol. 262, no. 23, pp. 1525-1530.
  • Hanssen, R.F., 2001. Radar Interferometry: Data Interpretation and Error Analysis. Kluwer Academic Publishers, Dordrecht.
  • Hearn, E., McClusky, S., Ergintav, S. and Reilinger, R., 2009. Izmit earthquake postseismic deformation and dynamics of the North Anatolian Fault Zone. Journal of Geophysical Research: Solid Earth, 114 (B08405), 1-21, doi:10.1029/2008JB006026.
  • Hearn, E.H., Bürgmann, R. and Reilinger, R.E., 2002. Dynamics of Izmit earthquake postseismic deformation and loading of the Duzce earthquake hypocenter. Bulletin of the Seismological Society of America, 92 (1), 172-193.
  • Hetland, E. and Hager, B., 2006. The effects of rheological layering on post-seismic deformation. Geophysical Journal International, 166 (1), 277-292.
  • Hussain, E., 2016. Mapping and modelling the spatial variation in strain accumulation along the North Anatolian Fault. Ph.D. thesis, University of Leeds, UK.
  • Hussain, E., Wright, T.J., Walters, R.J., Bekaert, D., Hooper, A. and Houseman, G.A., 2016a. Geodetic observations of postseismic creep in the decade after the 1999 Izmit earthquake, Turkey: Implications for a shallow slip deficit. J. Geophys. Res. Solid Earth, 121, 2980–3001, doi:10.1002/2015JB012737.
  • Hussain, E., Hooper, A., Wright, T.J., Walters, R.J. and Bekaert, D.P., 2016b. Interseismic strain accumulation across the central North Anatolian Fault from iteratively unwrapped insar measurements. J. Geophys. Res. Solid Earth 121, 9000–9019
  • Hussain, E., Wright, T.J., Walters, R.J., Bekaert, D.P.S., Lloyd, R. and Hooper, A., 2018. Constant strain accumulation rate between major earthquakes on the North Anatolian Fault. Nature Communications, 9, 1392 (2018) doi:10.1038/s41467-018-03739-2 .
  • Johnson, K.M., Hilley, G.E. and Bürgmann, R., 2007. Influence of lithosphere viscosity structure on estimates of fault slip rate in the Mojave region of the San Andreas fault system. Journal of Geophysical Research, 112 (B07408), 1-15.
  • Jolivet, R., Lasserre, C., Doin, M.-P., Guillaso, S., Peltzer, G., Dailu, R., Sun, J., Shen, Z.-K.and Xu, X., 2012. Shallow creep on the Haiyuan Fault (Gansu, China) revealed by SAR Interferometry. J. Geophys. Res., 117, B06401, doi:10.1029/2011JB008732.
  • Kaneko, Y., Fialko, Y., Sandwell, D.T., Tong, X., and Furuya, M., 2013. Interseismic deformation and creep along the central section of the North Anatolian fault (Turkey): InSAR observations and implications for rate-and-state friction properties. J. Geophys. Res. Solid Earth, 118, 316–331, doi:10.1029/2012JB009661.
  • Kenner, S.J. and Segall, P., 2000. Postseismic deformation following the 1906 San Francisco earthquake. Journal of Geophysical Research: Solid Earth, 105 (B6), 13195-13209.
  • Koçyiğit, A. and Rojay, B., 1992a. Erzincan basin and 1992/3/13-15 earthquakes: an active composite pull-apart basin on the North Anatolian fault zone, Türkiye, Abstract presented in International Workshop: Work in progress on the geology of Türkiye, Keele, April 9-10, 1992. Univ. Keele, Dep. Geology.
  • Koçyiğit, A. and Rojay, B., 1992b. A preliminary neotectonic report on the Erzincan earthquake, 1992, 13 March, TUBITAK, Ankara.
  • Köse, O., 2000. Kuzey Anadolu Fay Kuşağı'nda tektonik gerilim birikim noktalarının uzaktan algılama teknikleri ile belirlenmesi. Hacettepe Üniv., Fen Bil. Enst., Ankara.
  • Lapusta, N. and Liu, Y., 2009. Three-dimensional boundary integral modeling of spontaneous earthquake sequences and aseismic slip. Journal of Geophysical Research: Solid Earth, 114 (B09303), 1-25, doi:10.1029/2008JB005934.
  • Marone, C., 1998. Laboratory-derived friction laws and their application to seismic faulting. Annual Review of Earth and Planetary Sciences, 26 (1), 643-696.
  • Massonnet, D. and Feigl, K.L., 1995. Discrimination of geophysical phenomena in satellite radar interferograms, Geophysical Research Letters, 22 (12): 1537–1540.
  • Massonnet D. and Feigl K.L., 1998, Radar interferometry and its application to changes in the earth’s surface.Reviews of Geophysics, 36, 4, 441-400.
  • Massonnet, D. and Rabaute, T., 1993. Radar interferometry: Limits and Potential. IEEE Transactions on Geoscience and Remote Sensing, vol. 31, no. 2, pp. 455-464.
  • Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peitzer, G., Feigl, K. and Rabaute, T., 1993.The displacement field of the Landers earthquake mapped by radar interferometry.Nature, vol. 364, No. 6433.
  • Meade, B.J., Klinger, Y., and Hetland, E.A., 2013. Inference of multiple earthquake cycle relaxation timescales from irregular geodetic sampling of interseismic deformation. Bulletin of the Seismological Society of America, 103 (5), 2824-2835.
  • Nalbant, S., Barka, A. and Alptekin, Ö., 1996. Failure stress change caused by the 1992 Erzincan Earthquake (Ms=6.8). Geophysical Research Letters, 23 (13), 1561-1564, doi:10.1029/96GL01323.
  • Peltzer, G., Rosen, P., Rogez, F. and Hudnut, K., 1996. Postseismic rebound in fault step-overs caused by pore fluid flow. Science, 273 (5279), 1202-1204, DOI: 10.1126/science.273.5279.1202.
  • Pinar, A., Honkura, Y. and Kikuchi, M., 1994. Rupture process of the 1992 Erzincan Earthquake and its implication for seismotectonics in eastern Turkey. Geophysical Research Letters, 21 (18), 1971-1974, doi:10.1029/94GL01712.
  • Pollitz, F.F., 2005. Transient rheology of the upper mantle beneath central Alaska inferred from the crustal velocity field following the 2002 Denali earthquake. Journal of Geophysical Research: Solid Earth, 110 (B08407), 1-16, doi:10.1029/2005JB003672.
  • Prescott, W.H. and Nur, A., 1981. The accommodation of relative motion at depth on the San Andreas Fault System in California. Journal of Geophysical Research: Solid Earth, 86 (B2), 999-1004.
  • Reilinger, R.E, McClusky, S.C., Oral, M.B., King, R.W., Toksöz, M.N., Barka, A.A., Kınık, İ., Lenk, O. and Şanlı, İ., 1997. Global Positioning System measurements of present-day crustal movements in the Arabia-Africa-Eurasia plate collision zone. Journal of Geophysical Research, vol. 102, No. B5:9983-9999.
  • Rossi, M., 1996. Giving an Operational Status to ERS Interferometric Applications. Proceedings of the Second ERS Applications Workshop, London, UK, 6-8 December 1995 (ESA SP-383 February 1996).
  • Savage, J.C. and Burford, R.O., 1973. Geodetic determination of relative plate motion in central California. Journal of Geophysical Research, 78, 832-845, doi:10.1029/JB078i005p00832.
  • Savage, J.C. and Prescott, W., 1978.Asthenosphere readjustment and the earthquake cycle. Journal of Geophysical Research: Solid Earth, 83 (B7), 3369-3376.
  • Savage, J.C, 2000. Viscoelastic-coupling model for the earthquake cycle driven from below. Journal of Geophysical Research, 105 (B11), 25525-25532.
  • Scholz, C.H., 1988. The critical slip distance for seismic faulting. Nature, 336, 761-763.
  • Sipahioğlu, Ş., 1983. An evaluation on characteristics of earthquake activity of the Horasan-Narman region before the 30 October 1983 earthquake (in Turkish). Yeryuvarı ve İnsan (Türkiye Jeoloji Kurumu), 8, 3. pp. 12-15.
  • Soysal, H., Sipahioğlu, Ş., Kolçak, D. and Altınok, Y., 1981. Catalogue of historical earthquakes of Turkey (in Turkish).TUBİTAK Project No.TBAG 341, 86 pp.
  • Stchepinsky, V., Fırat, H., Ulusan, C. and Pamir, H.N., 1940. Report on the observations in the Erzincan-Kelkit earthquake area (in Turkish). Unpublished MTA report, no. 1097, 23 pages, Ankara.
  • Tatar, O., Temiz, H., Tutkun, S.Z., Park, R.G. and Stimpson, I.G., 1993. Surface deformation and tectonic setting of the 13 March 1992 Erzincan earthquake, Eastern Turkey. Geol. J., 28: 327-333. doi:10.1002/gj.3350280311.
  • Thatcher, W., 1983. Nonlinear strain buildup and the earthquake cycle. Journal of Geophysical Research, 88, 5893-5902.
  • Tong, X., Sandwell, D.T., and Smith-Konter, B., 2013. High-resolution interseismic velocity data along the San Andreas Fault from GPS and InSAR, J. Geophys. Res. Solid Earth, 118, 369–389, doi:10.1029/2012JB009442.
  • Vaghri, A. and Hearn, E.H., 2012. Can lateral viscosity contrasts explain asymmetric interseismic deformation around strike-slip faults? Bulletin of the Seismological Society of America, 102 (2), 490-503.
  • Walters, R.J., Holley, R.J., Parsons, B. and Wright, T.J., 2011. Interseismic strain accumulation across the North Anatolian Fault from Envisat InSAR measurements, Geophys. Res. Lett., 38, L05303, doi:10.1029/2010GL046443.
  • Walters, R.J., Parsons, B. and Wright, T.J., 2014. Constraining crustal velocity fields with InSAR for Eastern Turkey: Limits to the block-like behaviour of Eastern Anatolia. Journal of Geophysical Research: Solid Earth, 119, 5215–5234, doi:10.1002/2013JB010909.
  • Wang, H., and Wright, T.J., 2012. Satellite geodetic imaging reveals internal deformation of western Tibet. Geophys. Res. Lett., 39, L07303, doi:10.1029/2012GL051222.
  • Wright, T.J., Parsons, B. and Fielding, E., 2001. Measurement of interseismic strain accumulation across the North Anatolian Fault by satellite radar interferometry, Geophys. Res. Lett., 28, 2117–2120, doi:10.1029/2000GL012850.
  • Wright, T., 2016. The earthquake deformation cycle. AG: News & Reviews in Astronomy & Geophysics, 57, (4), 20-27
  • Yamasaki, T. and Houseman, G.A., 2012.The signature of depth-dependent viscosity structure in post-seismic deformation. Geophysical Journal International, 190 (2), 769-784.
  • Zebker, H.A. and Goldstein, R.M., 1986. Topographic mapping from interferometric SAR observations. Journal of Geophysical Research, vol. 91, no. B5, pp. 4993-4999.