Kabuk anizotropi araştırmalarında deprem sürülerinin istatistiksel analizi
Simav bölgesinin sismik aktivitesi çok yüksektir, bu nedenle genellikle bu bölgede küme depremleri meydana gelir. Bu tür kümeler, kayma dalgası ayırma yöntemi kullanılarak kabuksal anizotropinin ölçülmesi için uygundur. Bu yüzden, bu deprem kümeleri, bu bölgenin altındaki kabuksal anizotropinin ölçülmesini mümkün kılmıştır. Ayrıca, sismik anizotropi ile sismik b değeri arasındaki olası bir ilişkinin olup olmadığını bulmak için depremlerin frekans-büyüklük ilişkisi zaman, mekan ve derinliğin bir fonksiyonu olarak kullanılarak sismik b değeri ve stres değerleri hesaplanmıştır. Sismik b-değeri için, 1 Ocak 2010 – 28 Şubat 2019 arasında 1,0’den büyük olan KOERI (Boğaziçi Üniversitesi, Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü, Bölgesel Deprem-Tsunami İzleme Merkezi) tarafından hazırlanan bir deprem kataloğu kullanılmıştır. Bu nedenle, analizlerden elde edilen bulguların güvenilirliği artırılmıştır, çünkü bu bölge için 2010 öncesi depremlerin yer parametrelerinin doğru olarak belirlenmesi, sismik istasyon kapsamı eksikliği nedeniyle güvenilir değildir. Ayrımlanma analizi için bu bölgede 2016'dan 2017'ye kadar meydana gelen mikro depremler ilk olarak seçildi. Kayma dalgası bölme analizinden elde edilen sonuçlar ayrımlanma parametrelerinde güçlü saçılma olduğunu göstermiştir. Bu gözlem deprem sürülerinin neden olduğu stres birikimi ile tutarlı görünmektedir. Ayrıca, stresteki farklılıklar nedeniyle, her istasyon için ortalama zaman gecikmesinde değişiklikler gözlendi. Çalışmanın bir diğer önemli gözlemi, kayma dalgası polarizasyonlarında 90 ° 'nin kaydığıdır. Sismik olarak aktif fay düzlemlerinde dalgalı yüksek gözenekli sıvı basınçları, kayma dalgası bölme parametrelerinde saçılma modelinin en muhtemel nedenidir.
Statistical analysis of the earthquake swarms in crustal anisotropic investigation
The seismic activity of the Simav region is very high so that swarm earthquakes usually occur in this region. Such swarms were usually convenient to measure crustal anisotropy by using shear wave splitting method. Therefore, the swarms make possible to detect crustal anisotropy beneath the study area. Also, seismic b-value and stress were investigated by using the frequency–magnitude relationship of earthquakes as a function of time, space and depth in order to find out whether a possible relationship between seismic anisotropy and seismic b-value is or not. For seismic b-value, an earthquake catalog prepared by the KOERI (Bogazici University, Kandilli Observatory and Earthquake Research Institute, Regional Earthquake-Tsunami Monitoring Center) with magnitude greater than 1.0 from 1 January 2010 to 28 February 2019 was used. Hence, the reliability of findings obtained from the analysis was improved because correctly determining location parameters of earthquakes before 2010 for this region is not reliable due to lack of seismic station coverage. For splitting analysis, micro-earthquakes from 2016 to 2017 occurred in this region were initially selected. Results from shear wave splitting analysis indicated strong scattering in splitting parameters. This observation had been seemed consistent with stress-accumulation caused by the earthquake swarms. Additionally, due to variations in stress, changes in the average time-delay for each station were observed. Another important observation of the study is that 90°-flips in shear-wave polarizations observed. Fluctuating high pore-fluid pressures on seismically-active fault planes are the most likely cause of the scattering pattern in shear wave splitting parameters.
___
- Anderson, D., 1989. Theory of the Earth, Blackwell Sci. Cambridge, Mass. 366pp.
- Agius, M.R., Lebedev, S., 2017. Complex, multilayered azimuthal anisotropy beneath Tibet: evidence for co-existing channel flow and pure-shear crustal thickening. Geophysical Journal International, 210(3), 1823–1844.
- Faccenna C., Bellier O., Martioned J., Piromella and V. Regard, 2006. Slab detachment beneath Eastern Anatolia: A possible cause for the formation Of the North Anatolia Fault, Earth and Planetary Science Letters 242, 85-97.
- Hatzfeld, D., (2001). Shear wave anisotropy in the upper mantle beneath the Aegean related internal deformation, J. Geophys. Res., 106, 30 737-30 754.
- Hellfrich, G., and Brodholt, J., 1991. Relationship of deep seismicity to the thermal structure of subducted lithosphere, Nature, 353, 252-255.
- Gündoğdu, E., Özden, S., Kurban, Y. C., & Yalçıner, C. Ç., 2017. Simav Fayındaki Düşey Yerdeğiştirmelerin, Yeraltı Radarı (GPR) Yöntemi ile Belirlenmesi.
- Jarahi, Hadi. (2017). Delineate Location of the Last Earthquake Case Study NW of Iran. American Journal of Geosciences. 7. 7-13. 10.3844/ajgsp.2017.7.13.
- Kaneshima, S., and Silver, P.G., 1992, A search for source side mantle anisotropy, Geophys. Res. Lett., 19(10), 1049-1052.
- Karato, S., 1992. On the Lehmann discontinuity, Geophys. Res. Lett., 19, 2255- 2259.
- Kennett, B. L. N., 1991. The removal of free surface interactions from three-component seismograms, Geophys. J. lnt., 104, 153-163.
- Mainprice, D. and Silver, P. G., 1993, Interpretation of SKS-waves using samples from the subcontinental lithosphere, Physics of the Earth and Planetary Interiors, Volume 78, Issue 3-4, p. 257-280.
- Nuttli, O., 1961. The effects of the Earth's surface on the S wave particle motion, Bull. Seismol. Soc. Am., 51, 237-246.
- Ringwood, A. E. and Kesson, S. E., 1976, Limits on the Bulk Composition on the Moon, Abstracts of the Lunar and Planetary Science Conference, volume 7, page 741.
- Russo, R.M., and Silver, P. G., 1994. Trench parallel flow beneath the Nazca plate from Seismic anisotropy, Science, 263, 1105-1111.
- Sandvol, E., Ni, J., and Kind, R., 1997. Azimuthal Anisotropy Beneath the Southern Himalayas-Tibet Collision Zone, Journ. Geophys. Res., 102, p. 17813-17823.
- Silver, P.G. and Chan, W. W., 1991, Shear wave splitting and subcontinental mantle deformation, J. Geophys. Res., 96, 16429-16454.
- Spakman, W., and Nolet, G., 1988. In mathematical Geophysics (eds Vlaar, N. J. et al) 155-188 (Reidel, Dordrecht).
- Widiyantoro, S., van der Hilst, R. D., and Wenzel, F.,2004. Transition Zone Deformation of the Aegean Slab in the Mantle. International Journal of Tomography &Statistics; D04:1 14.
- Changhui Ju, Junmeng Zhao, Ning Huang, Qiang Xu, Hongbing Liu, Seismic anisotropy of the crust and upper mantle beneath western Tibet revealed by shear wave splitting measurements, Geophysical Journal International, Volume 216, Issue 1, January 2019, Pages 535–544, https://doi.org/10.1093/gji/ggy448.
- WIEMER, S., (2001). A software package to analyze seismicity: ZMAP. Seismol. Res. Lett. 72, p.373– 382.