Kabuk Anizotropi Araştırmalarında Deprem Kümelerinin İstatistiksel Analizi

Simav bölgesinin sismik aktivitesi çok yüksektir, bu nedenle genellikle bu bölgede küme depremleri meydana gelir. Bu tür kümeler, kayma dalgası ayırma yöntemi kullanılarak kabuksal anizotropinin ölçülmesi için uygundur. Bu yüzden, bu deprem kümeleri, bu bölgenin altındaki kabuksal anizotropinin ölçülmesini mümkün kılmıştır. Ayrıca, sismik anizotropi ile sismik b değeri arasındaki olası bir ilişkinin olup olmadığını bulmak için depremlerin frekans-büyüklük ilişkisi mekânın bir fonksiyonu olarak kullanılarak sismik b değeri ve stres değerleri hesaplanmıştır. Sismik b-değeri için, 1 Ocak 2010 – 28 Şubat 2019 arasında 1,0’den büyük olan KOERI (Boğaziçi Üniversitesi, Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü, Bölgesel Deprem-Tsunami İzleme Merkezi) tarafından hazırlanan bir deprem kataloğu kullanılmıştır. Bu nedenle, analizlerden elde edilen bulguların güvenilirliği artırılmıştır çünkü bu bölge için 2010 öncesi depremlerin yer parametrelerinin doğru olarak belirlenmesi, sismik istasyon kapsamı eksikliği nedeniyle güvenilir değildir. Ayrımlanma analizi için bu bölgede 2016'dan 2017'ye kadar meydana gelen mikro depremler ilk olarak seçilmiştir. Kayma dalgası bölme analizinden elde edilen sonuçlar ayrımlanma parametrelerinde güçlü saçılma olduğunu göstermiştir. Bu gözlem deprem sürülerinin neden olduğu stres birikimi ile tutarlı görünmektedir. Ayrıca, stresteki farklılıklar nedeniyle, her istasyon için ortalama zaman gecikmesinde değişiklikler gözlenmiştir. Çalışmanın bir diğer önemli gözlemi, kayma dalgası polarizasyonlarının 90 °’lik saçılımdır. Sismik olarak aktif fay düzlemlerinde dalgalı yüksek gözenekli sıvı basınçları, kayma dalgası bölme parametrelerinde saçılma modelinin en muhtemel nedenidir.

Statistical Analysis of the Earthquake Swarms in Crustal Anisotropic Investigations

The seismic activity of the Simav region is very high so that swarm earthquakes usually occur in this region. Such swarms were usually convenient to measure crustal anisotropy by using shear wave splitting method. Therefore, the swarms make possible to detect crustal anisotropy beneath the study area. In addition, seismic b-value and stress were investigated by using the frequency–magnitude relationship of earthquakes as a function of space in order to find out whether a possible relationship between seismic anisotropy and seismic bvalue is or not. For seismic b-value, an earthquake catalog prepared by the KOERI (BogaziciUniversity, Kandilli Observatory and Earthquake Research Institute, Regional EarthquakeTsunami Monitoring Center) with magnitude greater than 1.0 from 1 January 2010 to 28 February 2019 was used. Hence, the reliability of findings obtained from the analysis was improved because correctly determining location parameters of earthquakes before 2010 for this region is not reliable due to a lack of seismic station coverage. For splitting analysis, micro-earthquakes from 2016 to 2017 occurred in this region were initially selected. Results from shear wave splitting analysis indicated strong scattering in splitting parameters. This observation seems to be consistent with stress accumulation caused by the earthquake swarms. Additionally, due to variations in stress, changes in the average time-delay for eachstation were observed. Another important observation of the study is that 90°-flips in shearwave polarizations observed. Fluctuating high pore-fluid pressures on seismically active fault planes are the most likely cause of the scattering pattern in shear wave splitting parameters.

___

  • Agius, M.R., Lebedev, S., 2017. Complex, multilayered azimuthal anisotropy beneath Tibet: evidence for co-existing channel flow and pure-shear crustal thickening. Geophysical Journal International, 210(3), 1823–1844.
  • Akgün E., Özden S., 2019. Plio-Quaternary stress states along the Kütahya Fault and surroundings, NW Turkey. Turkish Journal of Earth Sciences, vol.28, pp.671-686.
  • Ambraseys, N. N.,1975. Studies in historical seismicity and tectonics. Geodynamics today, 7.
  • Angerer E, Crampin S, Li X-Y, Davis TL., 2002. Processing, modelling, and predicting timelapse effects of over pressured fluid-injection in a fractured reservoir. Geophys. J. Int., 149, 267-280.
  • Araragi, K. R., Savage, M. K., Ohminato, T., Aoki, Y., 2015. Seismic anisotropy of the upper crust around Mount Fuji, Japan. Journal of Geophysical Research: Solid Earth, 120, 2739– 2751. https://doi.org/10.1002/2014JB011554.
  • Booth, D. C., Crampin, S., 1985. Shear-wave polarizations on a curved wavefront at an isotropic free surface. Geophysical Journal International, 83(1), 31-45.
  • Changhui Ju, Junmeng Zhao, Ning Huang, Qiang Xu, Hongbing Liu, 2019. Seismic anisotropy of the crust and upper mantle beneath western Tibet revealed by shear wave splitting measurements. Geophysical Journal International, Volume 216, Issue 1, January 2019, Pages 535–544, https://doi.org/10.1093/gji/ggy448.
  • Crampin, S., 1981. A review of wave motion in anisotropic and cracked elastic-media. Wave Motion 3,343–391.
  • Crampin S., 1994.The fracture criticality of crustal rocks, Geophys. J. Int., 118, 428-438.
  • Crampin S, Volti T, Stefánsson R., 1999. A successfully stress-forecast earthquake. Geophys. J. Int., 138, F1-F5.
  • Crampin S, Volti T, Chastin S, et al., 2002. Indication of high pore-fluid pressures in a seismically-active fault zone [J]. Geophys J Int, 151: F1-F2.
  • Crampin, S., Chastin, S., Gao, Y., 2003. Shear-wave splitting in a critical crust: III. Preliminary report of multi-variable measurements in active tectonics. Journal of Applied Geophysics, 54(3-4), 265-277.
  • Crampin, S., Gao, Y., 2006. A review of techniques for measuring shear-wave splitting above small earthquakes. Phys. Earth. Planet. Inter., 159, 1-14.
  • Crampin S, Gao Y, Peacock S., 2008. Stress-forecasting (not predicting) earthquakes: A paradigm shift ? Geology, 36, 427-430.
  • Crampin S, Peacock S., 2008. A review of the current understanding of shear-wave splitting and common fallacies in interpretation. Wave Motion, 45, 675-722.
  • Deprem, 2019. Earthquake database. AFAD Deprem Dairesi Başkanlığı, (Prime Ministry Disaster and Emergency Management Presidency), Ankara. https://deprem.afad.gov.tr/. Accessed on November 2019.
  • Hatzfeld, D., 2001. Shear wave anisotropy in the upper mantle beneath the Aegean related internal deformation. J. Geophys. Res., 106, 30 737-30 754.
  • Godano, C., Lippiello, E., L. de Arcangelis, 2014. Variability of the b value in the Gutenberg– Richter distribution. Geophysical Journal International, Volume 199, Issue 3, December, Pages 1765 1771, https://doi.org/10.1093/gji/ggu359.
  • Gutenberg R., Richter C.F., 1944. Earthquake magnitude, intensity, energy and acceleration. Bull. Seismol. Soc. Am. 32:163–191
  • Gündoğdu, E., Kurban, Y. C., YALÇINER, C. Ç., Özden, S. , 2017. Simav Fayındaki Düşey Yerdeğiştirmelerin, GPR (Yeraltı Radarı) Yöntemi ile Belirlenmesi. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 3(2), 17-33.
  • Jafari, M. A., 2008. The distribution of b-value in different seismic provinces of Iran. In 14th word conference on earthquake engineering (pp. 12-17).
  • Jarahi, H., 2017. Delineate Location of the Last Earthquake Case Study NW of Iran. American Journal of Geosciences, 17(6).
  • Kalafat D., 2016. Statistical Evaluation of Turkey Earthquake Data (1900-2015): A Case study. Eastern Anatolian Journal of Science. 2: 14-36
  • Kandilli, 2019. Earthquake catalog, http://www.koeri.boun.edu.tr/sismo/zeqdb/. Boğaziçi University, Kandilli Observatory and Earthquake Research Institute, Regional Earthquake-Tsunami Monitoring Center (Kandilli Observatory and Earthquake Research Institute of Boğaziçi University. Accessed on November 2019.
  • Koçyiğit, A., 1984, Güneybatı Türkiye ve yakın dolayında levha içi yeni tektonik gelişim. Türkiye Jeol. Kur. Bült., 27, 1-16.
  • Lee, W. H. K., Lahr, J. C., 1975. Hypo71 (revised): a computer program for determining hypocenter, magnitude and first motion patter of local earthquakes. Open file report. US Geological Survey, 75.
  • Lynner, C., Long, M. D., 2014. Testing models of sub‐slab anisotropy using a global compilation of source‐side shear wave splitting data. Journal of Geophysical Research: Solid Earth, 119(9), 7226-7244.
  • Mogi, K., 1962. Study of elastic shocks caused by the fracture of heterogeneous materials and its relation to earthquake phenomena. Bull. Earthq. Res. Inst., Univ. Tokyo, 40, 125-173.
  • Murase, K., 2004. A characteristic change in fractal dimension prior to the 2003 Tokachi-oki earthquake (M J= 8.0), Hokkaido, Northern Japan. Earth, planets and space, 56(3), 401-405.
  • Nakaya, S., 2006. Spatiotemporal variation in b value within the subducting slab prior to the 2003 Tokachi‐oki earthquake (M 8.0), Japan. Journal of Geophysical Research: Solid Earth, 111(B3).
  • Nishizawa, O., 1982. Seismic velocity anisotropy in a medium containing oriented cracks. Journal of Physics of the Earth, 30(4), 331-347.
  • Öncel, A., Koral, H., Alptekin, O., 1998. The Dinar Earthquake (Mw = 6.2; October 1, 1995; Afyon-Turkey) and Earthquake Hazard of the Dinar-Çivril Fault, Pure and Applied Geophysics. 152. 91-105, 10.1007/s000240050143.
  • Pastori, M., Baccheschi, P., Margheriti, L., 2019. Shear wave splitting evidence and relations with stress field and major faults from the “Amatrice‐Visso‐Norcia Seismic Sequence”. Tectonics. Peacock, S., Hudson, J. A., 1990. Seismic properties of rocks with distributions of small cracks. Geophysical Journal International, 102(2), 471-484.
  • Pınar, N., Lahn, E., 1952. Turkish Earthquake Catalog with Descriptions. Technical Report, Turkey The Ministry of Public Works and Settlement, The General Directorate of Construction Affairs, Serial 6, no. 36.
  • Polat, G., Ozel, N. M., Crampin, S., Ergintav, S., Tan, O., 2012. Shear wave splitting as a proxy for stress forecast of the case of the 2006 Manyas-Kus Golu (Mb= 5.3) earthquake. Natural Hazards and Earth System Science, 12(4), 1073-1084. Reasenberg, P., 1985. Second-order moment of central California seismicity, 1969-82,J.Geophys. Res.,90, 5479–5495.
  • Savage, M.K., 1999. Seismic anisotropy and mantle deformation: what have we learned from shear wave splitting? Rev. Geophys., 37, 65-106.
  • Seyitoğlu, G., 1997. The Simav Graben: An example of young E-W trending structure in the late Cenozoic Extensional system of western Turkey. Trans. J. Earth Sci, 6, 135-141.
  • Silver, P.G., 1996. Seismic anisotropy beneath the continents: probing the depths of geology. Annu. Rev. Earth Planet. Sci. 24, 385–432.
  • Silver, P.G., Chan, W. W., 1991, Shear wave splitting and sub-continental mantle deformation. J. Geophys. Res., 96, 16429-16454.
  • Long, M.D., Silver, P.G., 2009. Shear wave splitting and mantle anisotropy: measurements, interpretations, and new directions. Surv. Geophys., 30, 407-461.
  • Volti T, Crampin S., 2003a. A four-year study of shear-wave splitting in Iceland: 1. Background and preliminary analysis, in New insights into structural interpretation and modelling. ed. Nieuwland, D.A., Geol. Soc. Lond., Spec. Publ., 212, 117-133.
  • Volti T, Crampin S., 2003b. A four-year study of shear-wave splitting in Iceland: 2. Temporal changes before earthquakes and volcanic eruptions, in New insights into structural interpretation and modelling. ed. Nieuwland, D.A., Geol. Soc. Lond., Spec. Publ., 212, 135-149.
  • Warren, N. W., Latham, G. V., 1970. An experimental study of thermally induced microfracturing and its relation to volcanic seismicity. Journal of Geophysical Research, 75(23), 4455-4464.
  • Wessel, P., W. H. F. Smith, R. Scharroo, J. F. Luis, F. Wobbe, 2013. Generic Mapping Tools: Improved version released, EOS Trans. AGU, 94, 409-410.
  • Wiemer, S., Wyss, M., 1997. Mapping the frequency‐magnitude distribution in asperities: An improved technique to calculate recurrence times? Journal of Geophysical Research: Solid Earth, 102(B7), 15115-15128.
  • Wuestefeld, A., Al-Harrasi, O., Verdon, J. P., Wookey, J., Kendall, J.- M., 2010. A strategy for automated analysis of passive microseismic data to image seismic anisotropy and fracture characteristics, Geophysical Prospecting, 58(5), 753–771, doi:10.1111/j.1365- 2478.2010.00891.x.
  • Wyss, M., Shimazaki, K., Wiemer, S., 1997. Mapping active magma chambers by b values beneath the off‐Ito volcano, Japan. Journal of Geophysical Research: Solid Earth, 102(B9), 20413-20422.
  • Wyss, C., Giannella, C., Robertson, E., 2001, September. Fastfds: A heuristic-driven, depthfirst algorithm for mining functional dependencies from relation instances extended abstract. In International Conference on Data Warehousing and Knowledge Discovery (pp. 101-110). Springer, Berlin, Heidelberg.
  • WIEMER, S., 2001. A software package to analyze seismicity: ZMAP. Seismol. Res. Lett. 72, p.373– 382.
  • Yılmazer, M., 2003. zSacWin (Kandilli Earthquake Processing Software) developed for KOERI. http://www.koeri.boun.edu.tr/.