Manyetotellürik Veri Üzerindeki Deniz Etkisinin İncelenmesi: Düzce Bölgesi Örneği

Bu çalışmada manyetotellürik (MT) veriler üzerindeki deniz etkisinin miktarının belirlenmesi amacıyla Kuzey Anadolu Fayı'nın batı kısmında Düzce bölgesine karşılık gelen alan temel alınarak düz çözüm çalışması yapılmıştır. Bölgenin tektonik yapısı dikkate alınarak oluşturulan modellerde, deniz için 0.3 ?-m ve kara için çeşitli modellerde 100 ?-m, 500 ?-m ve 1000 ?-m gibi sabit özdirenç değerleri atanmıştır. Deniz derinliğinin değişimi, fay, sediman ve Karadeniz kıyı şeridinin basit biçimde eklenmesi gibi parametreler de kullanılmıştır. Modellere ait MT tepkileri üç-boyutlu (3B) düz çözüm programı ile elde edilmiştir. Yapılan çalışma kuramsal bir çalışma olup, kuramsal veriler kullanılmıştır. Düz çözümden elde edilen özdirenç eğrileri, endüksiyon (irgitim, tesir) okları ve faz eğrileri karşılaştırılarak deniz etkisinin miktarı tartışılmıştır. Deniz derinliği ve deniz-kara sınırındaki özdirenç farklılığının artması ile MT tepkilerinin bozulmalara uğradığı sonucuna ulaşılmıştır. Deniz etkisinden dolayı E-kutuplaşması (transverse electric, TE mode) özdirenç eğrileri B-kutuplaşması (transverse magnetic, TM mode) özdirenç eğrilerine göre asıl olması gereken değerden büyük oranda farklı görülmektedir. Gerçek endüksiyon okları ise özdirenç eğrilerinin denizden etkilenmeye başladığı periyotlarda yön değiştirme eğilimi göstermiştir. Denize yakın yerlerde yapılan MT çalışmalarında deniz etkisinin MT tepkisinden giderilmesi gerekmektedir. Bu çalışma, denize yakın noktalarda yapılabilecek MT ölçümlerine dayanacak modeller geliştirildiğinde, doğru sonuca ulaşılabilmesi bakımından önemlidir.

Bulletin of the Earth Sciences Application and Research Centre of Hacettepe University

In this study, it was applied forward modeling to investigate the sea effect on the magnetotelluric (MT) measurements originating from a geometry that is similar to the Düzce area near Black Sea. It was used constant resistivity value for the sea 0.3 ?-m and for the land 100 ?-m, 500 ?-m and 1000 ?-m in the models while considering also the tectonic features in the area. Additionally, it was used parameters such as; depth, fault, sediments and coast line of the Black Sea. The three-dimensional MT responses were calculated for a number of models. This is a theoretical study based on synthetic data. The resistivity curves, induction arrows and phase curves obtained from models, were compared with each other using templates and the sea effect was discussed. Consequently, when the resistivity contrast between sea-land and the depth of sea are high, MT responses are effected significantly. When compared with E-polarization (transverse electric, TE mode) resistivity curves and B-polarization (transverse magnetic, TM mode) resistivity curves, E-polarization one has more distortion compared to the latter. Real induction arrows change direction beginning from the period when the sea effects on the MT measurements. Therefore, sea effect must be removed from the MT responses, if the study area is near the sea. This study is important in terms of obtaining accurate results when developing models based on MT measurements in coastal areas.

___

  • Cagniard, L., 1953. Basic theory of the magnetotelluric method in geophysical prospecting. Geophysics, 18 (3), 605-635.
  • Constable, S., Key, K. and Lewis, L., 2009. Mapping offshore sedimentary structure using electromagnetic methods and terrain effects in marine magnetotelluric data. Geophysical Journal International, 176 (2), 431-442.
  • Emre, Ö., Duman, T.Y., Özalp, S., Elmacı, H., Olgun, Ş. ve Şaroğlu, F., 2013. 1/1.125.000 Ölçekli Türkiye Diri Fay Haritası, Maden Tetkik ve Arama Genel Müdürlüğü Özel Yayınlar Serisi-, Ankara, Türkiye.
  • Haak, V. and Hutton, V. R. S., 1986. Electrical resistivity in continental lower crust. In The Nature of the Lower Continental Crust, eds. J. B. Dawson, D. A. Carswell, J. Hall, and K. H. Wedepohl. Oxford: Blackwell Scientific Publications. Geological Society Special Publication, 24, 35-49.
  • Han, N., Nam, M. J., Kim, H. J., Lee, T. J., Song, Y. and Suh, J. H., 2009. Three-dimensional inversion of magnetotelluric data including sea effects obtained in Pohang, Korea. Journal of Applied Geophysics, 68 (4), 533- 545.
  • Jiracek, G. R., Haak, V. and Olsen, K. H., 1995. Practical magnetotellurics in a continental rift enviroment. Elsevier, 103-129,
  • Jones, A. G., 1983. The problem of current channelling: A critical review. Geophysical Surveys, 6, 79-122.
  • Kaya, T., Kasaya, T., Tank, S. B., Ogawa, Y., Tunçer, M. K., Oshiman, N., Honkura, Y. and Matsushima, M., 2013. Electrical characterization of the North Anatolian Fault Zone underneath the Marmara Sea, Turkey by ocean bottom magnetotellurics. Geophysical Journal International, 193 (2), 664-677.
  • Key, K. and Constable, S., 2011. Coast effect distortion of marine magnetotelluric data: Insights from a pilot study offshore northeastern Japan. Physics of the Earth and Planetary Interiors, 184 (3-4), 194-207.
  • Konca, A. O., Leprince, S., Avouac, J. and Helmberger, D. V., 2010. Rupture Process of the 1999 Mw 7.1 Duzce Earthquake from Joint Analysis of SPOT, GPS, InSAR, StrongMotion, and Teleseismic Data: A Supershear Rupture with Variable Rupture Velocity. Bulletin of the Seismological Society of America, 100 (1), 267-288.
  • Mackie, R. L., Madden, T. R. and Wannamaker, P. E., 1993. Three-dimensional magnetotelluric modeling using difference equations-Theory and comparisons to integral equation solutions. Geophysics, 58 (2), 215-226.
  • Maxwell, J. C., 1865. A dynamical theory of the electromagnetic field. Philosophical Transactions of the Royal Society of London, 155, 459-512.
  • Nam, M. J., Kim, H. J., Song, Y., Lee, T. J. and Suh, J. H., 2008. Three dimensional topographic corrections of magnetotelluric data. Geophysical Journal International, 174 (2), 464-474.
  • Parkinson, W. D., 1959. Directions of Rapid Geomagnetic Fluctuations. Geophysical Journal of the Royal Astronomical Society, 2 (1), 1-14.
  • Parkinson, W., 1962. The influence of continents and oceans on geomagnetic variations. Geophysical Journal of The Royal Astronomical Socciety, 6, 441-449.
  • Peng, Z. and Ben-Zion, Y., 2004. Systematic analysis of crustal anisotropy along the Karadere- Düzce branch of the North Anatolian fault. Geophysical Journal International, 159 (1), 253-274.
  • Pous, J., Heise, W., Schnegg, P., Munoz, G., Marti, J. and Soriano, C., 2002. Magnetotelluric study of the Las Canadas caldera (Tenerife, Canary Islands): structural and hydrogeological implications. Earth and Planetary Science Letters, 204, 249-263.
  • Ranganayaki, R. P. and Madden, T. R., 1980. Generalized thin sheet analysis in magnetotellurics, an extension of Price's analysis. Geophysical Journal of the Royal Astronomical Society, 60 (3), 445-457.
  • Rikitake, T., 1948. Notes on the electromagnetic induction within the Earth. Earthquake Research Institute, 24, 1-9.
  • Rikitake, T., 1959. Anomaly of geomagnetic variations in Japan. Geophysical Journal of the Royal Astronomical Society, 2 (4), 276-287.
  • Ritter, O., Hoffmann-Rothe, A., Bedrosian, P. A., Weckmann, U. and Haak, V., 2005. Electrical conductivity images of active and fossil fault zones. Geological Society, London, Special Publications, 245 (1), 165-186.
  • Robinson, A., Spadini, G., Cloetingh, S. and Rudat, J., 1995. Stratigraphic evolution of the Black Sea: inferences from basin modelling. Marine and Petroleum Geology, 12 (8), 821-835.
  • Santos, F. A. M., Nolasco, M., Almeida, E. P., Pous, J. and Mendes-Victor, L. A., 2001. Coast effects on magnetic and magnetotelluric transfer functions and their correction: application to MT soundings carried out in SW Iberia. Earth and Planetary Science Letters, 186 (2), 283-295.
  • Santos, F. A. M., Pous, J., Almeida, E. P., Queralt, P., Marcuello, A., Matias, H. and MendesVictor, L. A., 1999. Magnetotelluric survey of the  electrical conductivity of the crust across the Ossa Morena and South Portuguese Zone suture. Tectonophysics, 313, 449-462.
  • Santos, F. A. M., Trota, A., Soares, A., Luzio, R., Lourenço, N., Matos, L., Almeida, E., Gaspar, J. L. and Miranda, J. M., 2006. An audio-mag- netotelluric investigation in Terceira Island. Journal of Applied Geophysics, 59, 314-323.
  • Simpson, F. and Bahr, K., 2005. Practical Magnetotellurics. Cambridge University Press. Cambridge.
  • Singh, U. K., Kant, Y. and Singh, R. P., 1995. Effect of coast on magnetotelluric measurements in India. Annali Di Geofisica, 38 (3-4), 331-335.
  • Tank, B., 2010. Armutlu Yarımadası manyetotellürik verisindeki üç boyutlu deniz etkisinin incelenmesi. İstanbul Yerbilimleri Dergisi, 23 (2), 65-72.
  • Tikhonov, A. N., 1950. On determining electrical characteristics of the deep layers of the Earth's Crust. Doklady Akademii Nauk, 73 (2), 295- 297.
  • Vozoff, K., 1972. The magnetotelluric method in the exploration of sedimentary basins. Geophysics, 37 (1), 98-141.
  • Wessel, P. and Smith, W. H. F., 1995. New version of the generic mapping tools released, EOS 76, 329.
  • Wiese, H., 1962. Geomagnetisch Tiefentelluric Teil II: die Streichrichtung der Untergrundstrukturen des elektrischen Widerstandes, erschlossen aus geomagnetischen Variationen. Geofisica pura e applicata, 52, 83-103.
  • Worzewski, T., Jegen, M., Kopp, H., Brasse, H. and Castillo, W. T., 2010. Magnetotelluric image of the fluid cycle in the Costa Rican subduction zone. Nature Geoscience, 4, 108-111.
  • Yang, J., Min, D.-J. and Yoo, H.-S., 2010. Sea effect correction in magnetotelluric (MT) data and its aplication to MT soundings carried out in Jeju Island, Korea. Geophysical Journal International, 182 (2), 727-740.