Hiperbolik Sekant Fonksiyonlar ile Analitik Çentik Süzgeç Tasarımı

Hiperbolik sekant fonksiyonlar ile çentik süzgeç tasarlanabilir. Bu çalışmada zaman ve frekans ortamlarında çentik süzgeçler incelenmektedir. Genel olarak, çentik süzgeç tasarımının amacı ölçülen verilerden istenmeyen (genellikle 50 veya 60 Hz lik girişimler) kısımların süzülmesidir. Bu çalışmada zaman ortamındaki çentik süzgeç fonksiyonu, çentik süzgeç fonksiyonunun frekans ortamındaki ifadesinden türetilmiştir. Basamaklı çentik süzgeci de analitik olarak tasarlanmıştır. Sayısal örneklerde çentik ve basamaklı çentik süzgeçler zaman ve frekans ortamında dikkate alınmıştır. Önerilen çentik süzgecin birim dürtü ve frekans tepki bağıntıları türetilmiştir. Son olarak, yeni tasarlanan filtre başarılı bir şekilde arazi verisine uygulanmıştır.

Analytic Notch Filter Design Using the Hyperbolic Secant Function

A notch filter can be analytically designed by using the hyperbolic secant function. This paper investigates notch filters in both time and frequency domains. Generally, the purpose of a notch filter design is to filter some unwanted signal (usually interference at 50 or 60 Hz) from observed data. In this study, the impulse response of a notch filter in the time domain was obtained by using its frequency domain expression. A cascaded-notch filter was analytically designed as well. Numerical examples were considered for a single notch filter and a cascaded-notch filter in the time and frequency domain. The frequency response and the impulse response of proposed notch filter were derived. Finally, the new designed filter was successfully applied to a field data set.

___

  • Abromowitz, M., and Stegun, I.A., 1965. Handbook of mathematical functions. Dover Publications Inc..
  • Başokur, A.T., 1998. Digital filter design using the hyperbolic tangent functions. Journal of the Balkan Geophysical Society, 1, 14-15.
  • Başokur, A.T., 2007. Spectral Analiz and Sayısal Süzgeçler. JFMO Eğitim Yayınları No:8 (in Turkish).
  • Başokur, A.T., 2011. Designing Frequency Selective Filters Via the Use of Hyperbolic Tangent Functions. Bulletin of Earth Sciences Application and Research Centre of Hacettepe University, 1, 69-88.
  • Bloomfield , P., 2000. Fourier Analysis of Time Series: An Introduction. New York: Wiley-Interscience, p.69.
  • Bracewell, R., 1965. The Fourier transform and its applications. McGraw_Hill, Inc..
  • Butler, K.E., and Russell, R.D., 1993. Subtraction of powerline harmonics from geophysical records. Geophysics, 58, 898-903.
  • Cadzow, J.A., 1973. Discrete-Time systems: An introduction with interdisciplinary applications. Prentice--Hall, Inc.
  • Deshpande, R., Jain, S.B., and Kumar, B., 2008. Design of maximally flat linear phase FIR notch filter with controlled null width. Signal Processing, 88, 2584-2592.
  • Ertürk, S., 2009. Sayısal işaret işleme, Birsen Yayınevi (in Turkish).
  • Gradshteyn, I.S., and Ryzhik, I.M., 1994. Table of integrals, series, and products, Academic Press Inc.
  • Harris, F.J., 1978. On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform. Proceedings of the IEEE, 6651-83.
  • Hattingh, M., 1988. A new data adaptive filtering program to remove noise form geophysical time- or space- series data. Computers & Geosciences, 14, 467-480.
  • Hayes, M.N., 1999. Digital Signal Processing, Schaum's Outline Series, McGraw-Hill. p.361.
  • Haykin, S, 1991. Adaptive filter design, Prentice Hall. Johensen, H.K., and Sorensen, K., 1979. Fast Hankel transforms. Geophysical Prospecting, 27, 876-901.
  • Oppenheim, A.V., and R.W. Schafer. 1999. DiscreteTime Signal Processing. Upper Saddle River, NJ: Prentice-Hall, 468-471.
  • Piskorowski, J., 2012. Suppressing harmonic powerline interference using multiple-notch filtering methods with improved transient behavior. Measurement, 45, 1350-1361.
  • Piskorowski, J., 2013. Time-efficient removel of power-line noise from EMG signals using IIR notch filters with non-zero initial conditions.
  • Bioceybernetics and Biomedical Engineering, 33, 1771-178.
  • Stancic, G., and Nikolic, S., 2013. Digital linear phase notch filter design based on IIR all-pass filter applications. Digital Signal Processing, 23, 1065-1069.