Sıçanlardaki Tiyol-Disülfit Dengesi Üzerine Ginkgo Biloba Özü ve Akut Yorucu Egzersizin Birlikte Uygulanmasının Etkileri Nelerdir?

Bu çalışma Ginkgo Biloba özü (EGB761)’nün ve akut yorucu egzersizin tek ve birlikte uygulanmasının ratlardaki tiyol-disülfit homeostazı (TDH) üzerine etkilerini değerlendirmeyi amaçladı. Toplam 32 sıçan ile 4 deneysel grup oluşturuldu. Kontrol (C) ve egzersiz (E) gruplarındaki hayvanlara, 4 hafta boyunca haftada 5 gün 2 mL/kg %0.9 salin solüsyonu verilirken, Ginkgo Biloba (GB) ve Ginkgo Biloba artı Egzersiz (GB + E) gruplarındaki diğerlerine aynı süre zarfında 100 mg/kg EGB761 verildi. Bu dönemin sonunda, E ve GB+E gruplarındaki sıçanlar, %5 eğimde 25 m/dk hızda yoruluncaya kadar koşturuldu. Tüm plazma örnekleri malondyaldehit (MDA) ve nitrik oksit (NO) seviyeleri ve süperoksit dismutaz (SOD) aktivitesi ve TDH için değerlendirildi. Çalışmanın bulguları, egzersizin GB+E grubunda MDA seviyelerini (P < ,001) ve SOD aktivitesini (P < ,05) önemli ölçüde arttırırken, GB grubunda yalnızca MDA düzeylerinin önemli oranda azaldığını (P < ,05) göstermiştir. Öte yandan, ne egzersiz ne de EGB761 uygulaması NO seviyesini ve TDH ile ilgili parametreleri etkilemiştir (P > ,05). EGB761, MDA’yı azaltarak oksidatif stresi önleyebilse de, egzersizdeki kullanımının, özellikle yeni bir oksidatif stres belirteci olan TDH açısından ilerde incelenmesi gerekmektir.

What is the Combined Effects of Ginkgo Biloba Extract (EGb761) and Acute Exhaustive Exercise on the Thiol-Disulfide Homeostasis in Rats?

This study aimed to evaluate the alone and combined effects of ginkgo biloba extract (EGb761) and acute exhaustive exercise on thiol-disulfide homeostasis (TDH) in male rats. Four experimental groups were formed with total 32 rats. Animals in the control and exercise groups received 2 mL/kg of 0.9% saline solution 5 days a week for 4 weeks, while the others in the ginkgo biloba and ginkgo biloba plus exercise groups received 100 mg/kg of EGb761 for the same duration. At the end of this period, rats in groups E and GB+E were made to run on a treadmill at 25 m/min at 5% incline until exhaustion. All plasma samples were evaluated for malondialdehyde (MDA) and nitric oxide (NO) levels, superoxide dismutase activity (SOD), and TDH. The findings of the study showed that exercise significantly increased MDA levels (P < .001) and SOD activity (P < .05) in group GB+E, while only MDA levels were decreased significantly (P < .05) in group GB. On the other hand, neither exercise nor EGb761 could affect the NO levels and the parameters related to TDH (P > .05). Although EGb761 can prevent oxidative stress by reducing MDA, its usage in exercise still needs to be further investigated, especially in terms of TDH that is a new important oxidative stress marker.

___

  • 1. Kohen R, Nyska A. Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol. 2002;30(6):620-650.
  • 2. Vujčić V, Radić Brkanac S, Radojčić Redovniković I, et al. Phytochemical and bioactive potential of in vivo and in vitro grown plants of Centaurea ragusina L.–detection of DNA/RNA active compounds in plant extracts via thermal denaturation and circular dichroism. Phytochem Anal. 2017;28(6):584-592.
  • 3. Halliwell B. Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Radic Res. 1999;31(4):261-272.
  • 4. Taysi S, Oztasan N, Efe H, et al. Endurance training attenuates the oxidative stress due to acute exhaustive exercise in rat liver. Acta Physiol Hung. 2008;95(4):337-347.
  • 5. Turell L, Radi R, Alvarez B. The thiol pool in human plasma: the central contribution of albumin to redox processes. Free Radic Biol Med. 2013;65:244-253.
  • 6. Jones DP, Liang Y. Measuring the poise of thiol/disulfide couples in vivo. Free Radic Biol Med. 2009;47(10):1329-1338.
  • 7. Erel O, Neselioglu S. A novel and automated assay for thiol/disulphide homeostasis. Clin Biochem. 2014;47(18):326-332.
  • 8. Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal. 2013;18(10):1208-1246.
  • 9. Waris G, Ahsan H. Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog. 2006;5:14.
  • 10. Ji LL. Antioxidants and oxidative stress in exercise. Proc Soc Exp Biol Med. 1999;222(3):283-292.
  • 11. Liu J, Zhou G, Mei Y, Xie WJ, Li PF, Yang F. Mechanism of oxidative stress in skeletal muscle of rats induced by acute exhaustive exercise. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2020;36(1):17-22.
  • 12. Liu W, Luo R, Tang C, Zhao X, Zeng S. Serumal oxidative stress status of acute exhaustive exercise rats following sleep deprivation. Chin J Tissue Eng Res. 2007;11:7710-7713.
  • 13. Lin X, Qu S, Hu M, Jiang C. Protective effect of erythropoietin on renal injury induced by acute exhaustive exercise in the rat. Int J Sports Med. 2010;31(12):847-853.
  • 14. Liu J, Yeo HC, Overvik-Douki E, et al. Chronically and acutely exercised rats: biomarkers of oxidative stress and endogenous antioxidants. J Appl Physiol (1985). 2000;89(1):21-28.
  • 15. Kayacan Y, Çetinkaya A, Yazar H, Makaracı Y. Oxidative stress response to different exercise intensity with an automated assay: thiol/disulphide homeostasis. Arch Physiol Biochem. 2021;127(6):504-508.
  • 16. Kayacan Y, Yazar H, Cerit G, Ghojebeigloo BE. A new oxidative stress indicator: effect of 5-hydroxytryptophan on thiol-disulfide homeostasis in exercise. Nutrition. 2019;63-64:114-119.
  • 17. Celik H, Kilic T, Kaplan DS, et al. The effect of newly initiated exercise training on dynamic thiol/disulphide homeostasis in sedentary obese adults. An Acad Bras Cienc. 2019;91(4):e20180930.
  • 18. Gul M, Demircan B, Taysi S, et al. Effects of endurance training and acute exhaustive exercise on antioxidant defense mechanisms in rat heart. Comp Biochem Physiol A Mol Integr Physiol. 2006;143(2):239-245.
  • 19. Shinozuka K, Umegaki K, Kubota Y, et al. Feeding of Ginkgo biloba extract (GBE) enhances gene expression of hepatic cytochrome P-450 and attenuates the hypotensive effect of nicardipine in rats. Life Sci. 2002;70(23):2783-2792.
  • 20. Zhou YH, Yu JP, Liu YF, et al. Effects of Ginkgo biloba extract on inflammatory mediators (SOD, MDA, TNF-α, NF-κBp65, IL-6) in TNBS-induced colitis in rats. Mediators Inflamm. 2006;2006:1-9.
  • 21. Mahadevan S, Park Y. Multifaceted therapeutic benefits of Ginkgo biloba L.: chemistry, efficacy, safety, and uses. J Food Sci. 2008;73(1): R14-R19.
  • 22. Atashak S. Effect of Ginkgo biloba L. on total antioxidant capacity and malondialdehyde after aerobic exercise in inactive women. Iran J Med Aromat Plants. 2018;34:601-611.
  • 23. Sadowska-Krępa E, Kłapcińska B, Pokora I, Domaszewski P, Kempa K, Podgórski T. Effects of six-week Ginkgo biloba supplementation on aerobic performance, blood pro/antioxidant balance, and serum brain-derived neurotrophic factor in physically active men. Nutrients. 2017;9(8):803-904.
  • 24. Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide. 2001;5(1):62-71.
  • 25. Sadeghinejad M, Soltani Z, Afzalpour ME, Khaksari M, Pourranjbar M. What is the combined effect of intense intermittent exercise and Ginkgo biloba plant on the brain neurotrophic factors levels, and learning and memory in young rats? Pharmacol Rep. 2019;71(3):503- 508.
  • 26. Oken BS, Storzbach DM, Kaye JA. The efficacy of Ginkgo biloba on cognitive function in Alzheimer disease. Arch Neurol. 1998;55(11):1409-1415.
  • 27. Sierpina VS, Wollschlaeger B, Blumenthal M. Gingko biloba. Am Fam Phys. 2003;68(5):923-926.
  • 28. Cinar Y, Kabakci R, Senol A. Effect of Ginkgo biloba extract (Egb761) supplementation on hemato-biochemical parameters following acute treadmill exercise in rats. Fırat Univ Sağlık Bilimleri Vet Derg. 2021;35:98-102.
  • 29. Buege JA, Aust SD. Microsomal lipid peroxidation. In: Methods Enzymol. 1st ed Abelson J., Simon M., Verdine GL., Pyle AM, eds. USA: Academic Press. 1978;52:302-310.
  • 30. Acikgoz O, Aksu I, Topcu A, Kayatekin BM. Acute exhaustive exercise does not alter lipid peroxidation levels and antioxidant enzyme activities in rat hippocampus, prefrontal cortex and striatum. Neurosci Lett. 2006;406(1-2):148-151.
  • 31. Wang J, Zhou S, Bronks R, Graham J, Myers S. Supervised exercise training combined with ginkgo biloba treatment for patients with peripheral arterial disease. Clin Rehabil. 2007;21(7):579-586.
  • 32. Kawamura T, Fujii R, Li X, Higashida K, Muraoka I. Effects of Exhaustive exercises, with different intensities, on oxidative stress markers in rat plasma and skeletal muscle. Sci Sports. 2018;33(3):169-175.
  • 33. Davies KJ, Quintanilha AT, Brooks GA, Packer L. Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun. 1982;107(4):1198-1205.
  • 34. Vincent HK, Morgan JW, Vincent KR. Obesity exacerbates oxidative stress levels after acute exercise. Med Sci Sports Exerc. 2004; 36(5):772-779.
  • 35. Mehlsen J, Drabaek H, Wiinberg N, Winther K. Effects of a Ginkgo biloba extract on forearm haemodynamics in healthy volunteers. Clin Physiol Funct Imaging. 2002;22(6):375-378.
  • 36. Qian ZM, Xiao DS, Ke Y, Liao QK. Increased nitric oxide is one of the causes of changes of iron metabolism in strenuously exercised rats. Am J Physiol Regul Integr Comp Physiol. 2001;280(3):R739-R743.
  • 37. Bing Y, Zhaobao W. Effects of Ginkgo biloba extract on free radical metabolism of liver in mice during endurance exercise. Afr J Tradit Complement Altern Med. 2010;7(4):291-295.
  • 38. Estruel-Amades S, Massot-Cladera M, Garcia-Cerdà P, et al. Protective effect of hesperidin on the oxidative stress induced by an exhausting exercise in intensively trained rats. Nutrients. 2019;11(4): 783.
  • 39. Gergerlioglu HS, Gokbel H, Okudan N, Gergerlioglu N, Demir EA. Quercetin and caffeic acid phenethyl ester (CAPE) attenuate acute exercise-induced oxidative stress. Prog Nutr. 2015;17:41-49.
  • 40. Leelayuwat, S. Laddawan, Y. Kanpetta, et al. Quercetin enhances endurance capacity via antioxidant activity and size of muscle fibre type 1. J Pharm Nutr Sci. 2012;2(2):160-164.
  • 41. Bridi R, Crossetti FP, Steffen VM, Henriques AT. The antioxidant activity of standardized extract of Ginkgo biloba (EGb 761) in rats. Phytother Res. 2001;15(5):449-451.
  • 42. Naik SR, Pilgaonkar VW, Panda VS. Evaluation of antioxidant activity of Ginkgo biloba phytosomes in rat brain. Phytother Res. 2006; 20(11):1013-1016.
  • 43. Yeh YC, Liu TJ, Wang LC, et al. A standardized extract of Ginkgo biloba suppresses doxorubicin-induced oxidative stress and p53-mediated mitochondrial apoptosis in rat testes. Br J Pharmacol. 2009;156(1):48-61.
  • 44. Bao G, Zhang Y, Yang X. Effect of lemon peel flavonoids on antifatigue and anti-oxidation capacities of exhaustive exercise mice. Appl Biol Chem. 2020;63:1-11.
  • 45. Şimşek E, Erel O, Bicer CK, Çarlıoğlu A. A novel method for determining the relation between nasal polyposis and oxidative stress: the thiol/disulphide homeostasis. Acta Otolaryngol. 2016;136(11):1180-1183.
  • 46. Gol M, Özkaya B, Yildirim C, Bal R. Regular exercise, overweight/obesity and sedentary lifestyle cause adaptive changes in thiol–disulfide homeostasis. An Acad Bras Cienc. 2019;91(2):e20180547.