Etanersept glutamat ile indüklenen nörotoksisiteye karşı nöronları korur: Bir in vitro çalışma

Mevcut çalışma, etanerseptin glutamat eksitotoksisitesinde koruyucu etkilerini, anti-inflamatuar ve anti-oksidan mekanizmalar yoluyla sıçan nöron kültüründe araştırmak için tasarlanmıştır. Sıçan kortikal nöronları glutamata maruz bırakıldı ve ardından etanerseptin glutamat toksisitesindeki etkisini değerlendirmek için etanersept çeşitli dozlarda (0.1, 0.5, 1, 10 μg/ml) uygulandı. Daha sonra nöronal hücre canlılığı, oksidatif stres ve inflamatuvar değişiklikleri inceledik. Etanerseptin, hücreleri glutamat eksitotoksisitesinden korudu. Hücre canlılığı analizlerimiz (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide ve laktat dehidrogenaz), etanersept’in glutamat tarafından hasarlanan nöronların canlılık oranını belirgin şekilde arttırdığını ortaya koydu. Ayrıca, etanerseptin potansiyel antioksidan özellikleri MDA ve TOS gibi oksidatif stres parametrelerinin incelenmesi ve TAS ve SOD olarak ölçülen antioksidan parametreleri ile değerlendirildi. Ayrıca etanerseptin antiinflamatuar etkilerini değerlendirmek için TNF-α seviyeleri ölçüldü. Elde edilen veriler, etanercept’in inflamasyonu ve oksidatif parametreleri azaltırken antioksidatif parametrelerini arttırdığını kanıtladı. Bu çalışma, etanerseptin glutamat kaynaklı nöronal hücre ölümünü güçlü bir şekilde önlediğini göstermiştir. Bu çalışma, glutamat eksitotoksisitesine maruz kalan nöronlarda etanerseptin potansiyel koruyucu etkisini gösteren ilk çalışmadır ve etanerseptin terapötik potansiyeli hakkında yeni kapılar açmaktadır.

Etanercept Protects Neurons Against Glutamate-Induced Neurotoxicity: An In Vitro Study

Current study was designed to investigate the protective effects of etanercept in glutamate excitotoxicity in rat neuronal culture through anti-inflammatory and anti-oxidant mechanisms. Rat cortical neurons were exposed to glutamate and to assess the effect of etanercept in glutamate toxicity, etanercept was applied at various doses (0.1, 0.5, 1, 10 μg/ml). Then we examined the changes in neuronal cell viability, oxidative stress and inflammation. Etanercept preserved cultured cells from glutamate excitotoxicity. Our cell viability analysis (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase) revealed that etanercept markedly increased the viability ratio of neurons injured by glutamate. In addition, the potential antioxidant property of etanercept was evaluated via the examination of oxidative stress parameters, such as MDA and TOS, and antioxidant parameters measured as TAS and SOD. Moreover, TNF-? levels were measured to evaluate anti-inflammatory effects of etanercept. Obtained data proved that etanercept increases the activity of the antioxidative parameters while decreased oxidative parameters and inflammation. The current study demonstrated that etanercept strongly prevents glutamate- induced neuronal cell death. This study is the first to demonstrate a potential protective effect of etanercept in neurons exposed to glutamate excitotoxicity and opens new doors on the therapeutic potential of etanercept.

___

  • 1. Albright TD, Jessell TM, Kandel ER, Posner MI. Neural science. Cell. 2000;100:1-55.
  • 2. Pinzón-Parra CA, Coatl-Cuaya H, Díaz A, Guevara J, Rodríguez-Moreno A, Flores G. Long-term effect of neonatal antagonism of ionotropic glutamate receptors on dendritic spines and cognitive function in rats. J Chem Neuroanat. 2022;119:102054.
  • 3. Tripathi AS, Bansod P, Swathi KP. Activation of 5-HT 1b/d receptor restores the cognitive function by reducing glutamate release, deposition of beta-amyloid and TLR-4 pathway in the brain of scopolamine-induced dementia in rat. J Pharm Pharmacol. 2021;73(12):1592-1598.
  • 4. Song JH, Kang KS, Choi YK. Protective effect of casuarinin against glutamate-induced apoptosis in HT22 cells through inhibition of oxidative stress-mediated MAPK phosphorylation. Bioorg Med Chem Lett. 2017;27(23):5109-5113.
  • 5. Hu Y, Feng X, Chen J, Wu Y, Shen L. Hydrogen-rich saline alleviates early brain injury through inhibition of necroptosis and neuroinflammation via the ROS/HO-1 signaling pathway after traumatic brain injury. Exp Ther Med. 2022;23(2):126.
  • 6. Ferah Okkay I, Okkay U, Cicek B, et al. Neuroprotective effect of bromelain in 6-hydroxydopamine induced in vitro model of Parkinson's disease. Mol Biol Rep. 2021;48(12):7711-7717.
  • 7. Floyd RA, Hensley K. Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiol Aging. 2002; 23(5):795-807.
  • 8. Kim HT, Prochiantz A, Kim JW. Donating Otx2 to support neighboring neuron survival. BMB Rep. 2016;49(2):69-70.
  • 9. Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A. Biomarkers of oxidative damage in human disease. Clin Chem. 2006;52(4):601-623.
  • 10. Chamorro Á, Dirnagl U, Urra X, Planas AM. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol. 2016;15(8):869-881.
  • 11. Chen ZC, Zhong CJ. Oxidative stress in Alzheimer's disease. Neurosci Bull. 2014;30(2):271-281.
  • 12. Hansson E, Muyderman H, Leonova J, et al. Astroglia and glutamate in physiology and pathology: aspects on glutamate transport, glutamate-induced cell swelling and gap-junction communication. Neurochem Int. 2000;37(2-3):317-329.
  • 13. Karbownik M, Reiter RJ, Garcia JJ, Tan D. Melatonin reduces pheny lhydr azine -indu ced oxidative damage to cellular membranes: evidence for the involvement of iron. Int J Biochem Cell Biol. 2000; 32(10):1045-1054.
  • 14. Hertz L, Yu ACH, Kala G, Schousboe A. Neuronal-astrocytic and cytos olic- mitoc hondr ial metabolite trafficking during brain activation, hyperammonemia and energy deprivation. Neurochem Int. 2000;37(2-3):83-102.
  • 15. Ou W, Yang J, Simanauskaite J, et al. Biologic TNF-alpha inhibitors reduce microgliosis, neuronal loss, and tau phosphorylation in a transgenic mouse model of tauopathy. J Neuroinflammation. 2021;18(1):312.
  • 16. Taguchi S, Azushima K, Yamaji T, et al. Effects of tumor necrosis factor-alpha inhibition on kidney fibrosis and inflammation in a mouse model of aristolochic acid nephropathy. Sci Rep. 2021;11:23587.
  • 17. Ren Z, Cui N, Zhu M, Khalil RA. TNFalpha blockade reverses vascular and uteroplacental matrix metalloproteinases imbalance and collagen accumulation in hypertensive pregnant rats. Biochem Pharmacol. 2021;193:114790.
  • 18. Pozniak PD, White MK, Khalili K. TNF-alpha/NF-kappaB signaling in the CNS: possible connection to EPHB2. J Neuroimmune Pharmacol. 2014;9(2):133-141.
  • 19. Kübra Elçioğlu H, Kabasakal L, Tufan F, et al. Effects of systemic thalidomide and intra cereb roven tricu lar etanercept and infliximab administration in a streptozotocin induced dementia model in rats. Acta Histochem. 2015;117(2):176-181.
  • 20. Kumari S, Mehta SL, Li PA. Glutamate induces mitochondrial dynamic imbalance and autophagy activation: preventive effects of selenium. PLOS ONE. 2012;7(6):e39382.
  • 21. Sattler R, Tymianski M. Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol Neurobiol. 2001;24(1-3):107-129.
  • 22. Feng X, Zhou Q, Liu C, Tao ML, Cao JG, Zhong ZH. Protective effect of 7-dif​luoro metho xy-5, 4′-Di -hydr oxyl isoflavone against the damage induced by glutamate in PC12 cells. Int J Mol Med. 2012;30(5):1159-1165.
  • 23. Schreihofer DA, Redmond L. Soy phytoestrogens are neuroprotective against stroke-like injury in vitro. Neuroscience. 2009;158(2):602-609.
  • 24. Rebai O, Belkhir M, Sanchez-Gomez MV, Matute C, Fattouch S, Amri M. Differential molecular targets for neuroprotective effect of chlorogenic acid and its related compounds against glutamate induced excitotoxicity and oxidative stress in rat cortical neurons. Neurochem Res. 2017;42(12):3559-3572.
  • 25. Hirata Y, Yamamoto H, Atta MSM, Mahmoud S, Oh-hashi K, Kiuchi K. Chloroquine inhibits glutamate-induced death of a neuronal cell line by reducing reactive oxygen species through sigma-1 receptor. J Neurochem. 2011;119(4):839-847.
  • 26. Chen J, Chua KW, Chua CC, et al. Antioxidant activity of 7,8-dihydroxyflavone provides neuroprotection against glutamate-induced toxicity. Neurosci Lett. 2011;499(3):181-185.
  • 27. Kanki R, Nakamizo T, Yamashita H, et al. Effects of mitochondrial dysfunction on glutamate receptor-mediated neurotoxicity in cultured rat spinal motor neurons. Brain Res. 2004;1015(1-2):73-81.
  • 28. Conrad M, Sato H. The oxidative stress-inducible cystine/glutamate antiporter, system x (c) (-): cystine supplier and beyond. Amino Acids. 2012;42(1):231-246.
  • 29. Hasturk AE, Baran C, Yilmaz ER, et al. Etanercept prevents histopathological damage after spinal cord injury in rats. Asian J Neurosurg. 2018;13(1):37-45.
  • 30. Szelényi J. Cytokines and the central nervous system. Brain Res Bull. 2001;54(4):329-338.
  • 31. Gocmez SS, Yazir Y, Gacar G, et al. Etanercept improves aginginduced cognitive deficits by reducing inflammation and vascular dysfunction in rats. Physiol Behav. 2020;224:113019.
  • 32. Clark IA, Vissel B. Excess cerebral TNF causing glutamate excitotoxicity rationalizes treatment of neurodegenerative diseases and neurogenic pain by anti-TNF agents. J Neuroinflammation. 2016;13(1):236.
  • 33. Takeuchi H, Jin SJ, Wang JY, et al. Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem. 2006; 281(30):21362-21368.
  • 34. Morales I, Rodriguez M. Self-induced accumulation of glutamate in striatal astrocytes and basal ganglia excitotoxicity. Glia. 2012;60(10):1481-1494.
  • 35. Jing H, Hao YX, Bi Q, Zhang JZ, Yang PT. Intra-amygdala microinjection of TNF-alpha impairs the auditory fear conditioning of rats via glutamate toxicity. Neurosci Res. 2015;91:34-40.
  • 36. Chio CC, Lin JW, Chang MW, et al. Therapeutic evaluation of etanercept in a model of traumatic brain injury. J Neurochem. 2010;115(4):921-929.
  • 37. Kang YM, Wang Y, Yang LM, et al. TNF-alpha in hypothalamic paraventricular nucleus contributes to sympathoexcitation in heart failure by modulating AT1 receptor and neurotransmitters. Tohoku J Exp Med. 2010;222(4):251-263.
  • 38. Kang YM, He RL, Yang LM, et al. Brain tumour necrosis factor-alpha modulates neurotransmitters in hypothalamic paraventricular nucleus in heart failure. Cardiovasc Res. 2009;83(4):737-746.