Sıçanlarda Kadmiyuma Bağlı Beyin Hasarında Nörotoksisite Oksidatif Stres ve Oksidatif DNA Hasarının Araştırılması

Dünyada birçok alanda yaygın olarak kullanılan toksik metallerden biri olan kadmiyum, vücuda farklı şekillerde alınmaktadır. Bu çalışmada kadmiyumun beyinde oluşturduğu hasar ve bu hasarın beyin dokusunda GFAP, 8-OHdG, nNOS, SOD, GSH, GPx, iNOS ve MDA ekspresyon düzeylerini nasıl etkilediği araştırıldı. Bu deneysel çalışmada 200-220 gr ağırlığında 16 adet erkek Wistar albino sıçan kullanıldı. Sıçanlar iki gruba ayrıldı. Kadmiyum grubuna 0.025 mmol/kg’lık tek bir intraperitoneal Cd uygulandı. Rat beyin dokuları biyokimyasal, histopatolojik ve immünohistokimyasal boyama yöntemi ile incelendi. Beyin dokularının histopatolojik incelemesinde kontrol grubuna ait beyin örneklerinde normal histolojik yapı gözlenirken, kadmiyum grubunda beyinde nöronlarda nekroz ve dejenerasyon ile parankim ve meningeal damarlarda hiperemi gözlendi. İmmünohistokimyasal incelemelerde kontrol grubunun beyin örneklerinde GFAP, 8-OHdG ve nNOS ekspresyonuizlenmezken, Cd uygulanan grubun beyin dokusunda şiddetli GFAP, 8-OHdG ve nNOS ekspresyonu gözlendi. Yapılan biyokimyasal analizlerde Cd gruplarında SOD, GSH ve GPx enzim seviyeleri artarken, iNOS ve MDA enzim seviyelerinin düştüğü gözlendi. Bu çalışma sonucunda markerlerin ekspresyon düzeylerinin Cd toksisitesinin patogenezinde oksidatif stresin anlaşılmasında önemli olduğu ve gelecekte yol gösterici ve önemli katkılar sağlayacağı düşünülmektedir.

Investigation of Neurotoxicity Oxidative Stress and Oxidative DNA Damage in Cadmium-Induced Brain Injury in Rats

Cadmium, which is one of the toxic metals widely used in many areas of the world, is taken into the body in different ways. In this study, the damage caused by cadmium in the brain and how this damage affects the levels of glial fibrial acidic protein, 8-Oxo-2’-deoxyguanosine (8-OHdG), neuronal nitric oxide synthase, Süperoksit dismutaz (SOD), Glutatyon (GSH), glutatyon peroksidaz (GPX), inducible nitric oxide synthase, and malondialdehid (MDA) expression in the brain tissue were investigated. A total of 16 male Wistar albino rats 200-220 g were used in the experimental study. Rats were divided into 2 groups. A single cadmium i.p. dose of 0.025 mmol/kg was given to rats in the cadmium group. Rat brain tissue samples were analyzed using biochemical analyses as well as histopathological and immunohistochemical methods. In the histopathological examination of the brain tissues, normal histological structure was observed in the brain samples belonging to the control group, while necrosis and degeneration of neurons in the brain, as well as hyperemia in the parenchyma and meningeal vessels were observed in the cadmium group. In immunohistochemical examinations, while glial fibrial acidic protein, 8-OHdG, and neuronal nitric oxide synthase expression was not observed in the brain samples of control group, severe expression of glial fibrial acidic protein, 8-OHdG, and neuronal nitric oxide synthase was observed in the brain tissue of the group receiving cadmium. In the biochemical analyses performed, it was observed that SOD, GSH, and GPx enzyme levels increased in cadmium groups, inducible nitric oxide synthase and MDA enzyme levels were decreased. As a result of this study, it is thought that markers’ expression levels are important in understanding the oxidative stress in pathogenesis of cadmium toxicity and will provide a guide and important contributions to future studies.

___

  • 1. Baldwin DR, Marshall WJ. Heavy metal poisoning and its laboratory investigation. Ann Clin Biochem. 1999;36(3):267-300. [CrossRef]
  • 2. Akkoyun HT, Bengu AS, Ulucan A, et al. Effect of astaxanthin on rat brains against oxidative stress induced by cadmium. Biochemical, histopathological evaluation. J Sci Techno. 2018;8:33-39.
  • 3. Hocaoğlu ÖA, Genç BN. Cadmium in plants, humans and the environment. Front Life Sci. 2020;1:12-21
  • 4. Taysı MR, Kırıcı M, Kırıcı M, Sögüt B, Bozdayi MA, Taysi S. Gökkuşağı Alabalıklarında (Oncorhynchus mykiss) kadmiyum Toksisitesi: kalp ve kas üzerine bir araştırma. Turk J Agri Nat Sci. 2020;7:983-987. [CrossRef]
  • 5. Evcimen M, Aslan R, Gulay MS. Protective effects of polydatin and grape seed extract in rats exposed to cadmium. Drug Chem Toxicol. 2020;43(3):225-233. [CrossRef]
  • 6. Thévenod F. Nephrotoxicity and the proximal tubule. Insights from cadmium. Nephron Physiol. 2003;93(4):p87-p93. [CrossRef]
  • 7. Li M, Pi H, Yang Z, et al. Melatonin antagonizes cadmium‐induced neurotoxicity by activating the transcription factor EB‐dependent autophagy–lysosome machinery in mouse neuroblastoma cells. J Pineal Res. 2016;61(3):353-369. [CrossRef]
  • 8. Okuda B, Iwamoto Y, Tachibana H, Sugita M. Parkinsonism after acute cadmium poisoning. Clin Neurol Neurosurg. 1997;99(4):263-265. [CrossRef]
  • 9. Panayi AE, Spyrou NM, Iversen BS, White MA, Part P. Determination of cadmium and zinc in Alzheimer’s brain tissue using inductively coupled plasma mass spectrometry. J Neurol Sci. 2002;195(1):1-10. [CrossRef]
  • 10. Notarachille G, Arnesano F, Calò V, Meleleo D. Heavy metals toxicity: effect of cadmium ions on amyloid beta protein 1-42. Possible implications for Alzheimer’s disease. Biometals.2014;27(2):371-388. [CrossRef]
  • 11. AdaliA, YirunA, Kocer Gümüşel B, Erkekoğlu P. Alzheimer Hastalığının Gelişiminde Biyolojik Ajanların Olası Etkileri. J Fac Pharm Ankara. 2019;44(1):167-187.
  • 12. Dimou L, Götz M. Glial cells as progenitors and stem cells: new roles in the healthy and diseased brain. Physiol Rev. 2014;94(3):709-737. [CrossRef]
  • 13. Terni B, López-Murcia FJ, Llobet A. Role of neuron-glia interactions in developmental synapse elimination. Brain Res Bull. 2017;129:74-81. [CrossRef]
  • 14. Kim Y, Park J, Choi YK. The role of astrocytes in the central nervous system focused on BK channel and heme oxygenase metabolites: a review. Antioxidants (Basel). 2019;8(5):121. [CrossRef]
  • 15. Huang L, Nakamura Y, Lo EH, Hayakawa K. Astrocyte signaling in the neurovascular unit after central nervous system injury. Int J Mol Sci. 2019;20(2):282. [CrossRef]
  • 16. Tiffany-Castiglioni E, Sierra EM, Wu JN, Rowles TK. Lead toxicity in neuroglia. Neurotoxicology. 1989;10(3):417-443.
  • 17. Middeldorp J, Hol EM. GFAP in health and disease. Prog Neurobiol. 2011;93(3):421-443. [CrossRef]
  • 18. Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAPthirty-one years (1969-2000). Neurochem Res. 2000;25(9-10):1439-1451. [CrossRef]
  • 19. Hagemann TL, Powers B, Mazur C, et al. Antisense suppression of glial fibrillary acidic protein as a treatment for Alexander disease. Ann Neurol. 2018;83(1):27-39. [CrossRef]
  • 20. van Bodegraven EJ, van Asperen JV, Robe PAJ, Hol EM. Importance of GFAP isoform‐specific analyses in astrocytoma. Glia. 2019;67(8):1417-1433. [CrossRef]
  • 21. McLendon RE, Bigner DD. Immunohistochemistry of the glial fibrillary acidic protein: basic and applied considerations. Brain Pathol. 1994;4(3):221-228. [CrossRef]
  • 22. Hossain S, Liu HN, Nguyen M, Shore G, Almazan G. Cadmium exposure induces mitochondria-dependent apoptosis in oligodendrocytes. Neurotoxicology. 2009;30(4):544-554. [CrossRef]
  • 23. Rai A, Maurya SK, Khare P, Srivastava A, Bandyopadhyay S. Characterization of developmental neurotoxicity of As, Cd, and Pb mixture: synergistic action of metal mixture in glial and neuronal functions. Toxicol Sci. 2010;118(2):586-601. [CrossRef]
  • 24. Valavanidis A, Vlachogianni T, Fiotakis C. 8-hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Stud. 2020;27:120-139.
  • 25. Alnahdi HS, Sharaf IA. Possible prophylactic effect of omega-3 fatty acids on cadmium-induced neurotoxicity in rats’ brains. Environ Sci Pollut Res Int. 2019;26(30):31254-31262. [CrossRef]
  • 26. Al Olayan EM, Aloufi AS, AlAmri OD, El-Habit OH, Abdel Moneim AE. Protocatechuic acid mitigates cadmium-induced neurotoxicity in rats: role of oxidative stress, inflammation and apoptosis. Sci Total Environ. 2020;723:137969. [CrossRef]
  • 27. Chen J, Xu Y, Han Q, Yao Y, Xing H, Teng X. Immunosuppression, oxidative stress, and glycometabolism disorder caused by cadmium in common carp (Cyprinus carpio L.): application of transcriptome analysis in risk assessment of environmental contaminant cadmium. J Hazard Mater. 2019;366:386-394. [CrossRef]
  • 28. Al Omairi NE, Radwan OK, Alzahrani YA, Kassab RB. Neuroprotective efficiency of Mangifera indica leaves extract on cadmium-induced cortical damage in rats. Metab Brain Dis. 2018;33(4):1121-1130. [CrossRef]
  • 29. Fidancı ŞB, Gümüş LT, Nitrik Oksit Ölçüm Yöntemleri. Mersin Üni Sağ Bil Derg. 2011;4(3):1-8.
  • 30. Liang HY, Chen ZJ, Xiao H, et al. nNOS-expressing neurons in the vmPFC transform pPVT-derived chronic pain signals into anxiety behaviors. Nat Commun. 2020;11(1):2501. [CrossRef]
  • 31. Qu W, Liu NK, Wu X, et al. Disrupting nNOS–PSD95 interaction improves neurological and cognitive recoveries after traumatic brain injury. Cereb Cortex. 2020;30(7):3859-3871. [CrossRef]
  • 32. Lechado i Terradas A, Vitadello M, Traini L, Namuduri AV, Gastaldello S, Gorza L. Sarcolemmal loss of active nNOS (Nos1) is an oxidative stress‐dependent, early event driving disuse atrophy. J Pathol. 2018;246(4):433-446. [CrossRef]
  • 33. Favorito R, Monaco A, Grimaldi MC, Ferrandino I. Effects of cadmium on the glial architecture in lizard brain. Eur J Histochem. 2017;61(1):2734. [CrossRef]
  • 34. Yildirim S, Celikezen FC, Oto G, et al. An investigation of protective effects of litium borate on blood and histopathological parameters in acute cadmium-induced rats. Biol Trace Elem Res. 2018;182(2):287-294. [CrossRef]
  • 35. Meeker JD, Rossano MG, Protas B, Rossano MG, Protas Bet al. Cadmium, lead, and other metals in relation to semen quality: human evidence for molybdenum as a male reproductive toxicant. Environ Health Perspect. 2008;116(11):1473-1479. [CrossRef]
  • 36. Karaca Ö, Sunay FB, Kuş MA, Gülcen B, Özcan E, Ögetürk M, Kuş İ. Kadmiyum Ile Oluşturulan Deneysel Karaciğer Hasarına Karşı Melatoninin Etkilerinin Biyokimyasal ve Histopatolojik Düzeylerde Incelenmesi. Firat Med J. 2014;19(3):110-115
  • 37. Eddleston M, Mucke L. Molecular profile of reactive astrocytes—implications for their role in neurologic disease. Neuroscience. 1993;54(1):15-36. [CrossRef]
  • 38. Messing A, Brenner M. GFAP at 50. ASN Neuro. 2020;12:1759091420949680. [CrossRef]
  • 39. Trautz F, Franke H, Bohnert S, et al. Survival-time dependent increase in neuronal IL-6 and astroglial GFAP expression in fatally injured human brain tissue. Sci Rep. 2019;9(1):11771. [CrossRef]
  • 40. Baran A, Sulukan E, Türkoğlu M, et al. Is sodium carboxymethyl cellulose (CMC) really completely innocent? It may be triggering obesity. Int J Biol Macromol. 2020;163:2465-2473. [CrossRef]
  • 41. Sulukan E, Ghosigharehagaji A, Baran A, Yildirim S, Bolat İ, Ceyhun SB. A versatile toxicity evaluation of ethyl carbamate (urethane) on zebrafish embryos: morphological, physiological, histopathological, immunohistochemical, transcriptional and behavioral approaches. Tox Let. 2021;353:71-78. [CrossRef]
  • 42. Varmazyari A, Taghizadehghalehjoughi A, Sevim C, et al. Cadmium sulfide-induced toxicity in the cortex and cerebellum: in vitro and in vivo studies. Tox Rep. 2020;7:637-648. [CrossRef]
  • 43. Korneev SA, Park JH, O’Shea M. Neuronal expression of neural nitric oxide synthase (nNOS) protein is suppressed by an antisense RNA transcribed from an NOS pseudogene. J Neurosci. 1999;19(18):7711-7720. [CrossRef]
  • 44. Liu W, Li J, Sun X, et al. Repetitive hyperbaric oxygen exposures enhance sensitivity to convulsion by upregulation of eNOS and nNOS. Brain Res. 2008;1201:128-134. [CrossRef]
  • 45. Bonthius DJ, Bonthius NE, Li S, Karacay B. The protective effect of neuronal nitric oxide synthase (nNOS) against alcohol toxicity depends upon the NO-cGMP-PKG pathway and NF-κB. Neurotoxicology. 2008;29(6):1080-1091. [CrossRef]
  • 46. Bonthius DJ, MCkim RA, Koele L, et al. Pantazis NJ. Severe alcohol‐induced neuronal deficits in the hippocampus and neocortex of neonatal mice genetically deficient for neuronal nitric oxide synthase (nNOS). J Comp Neurol. 2006;499(2):290-305. [CrossRef]
  • 47. Yuan Y, Jiang C, Sun Y, et al. Effect of cadmium on the apoptosis and mRNA transcription of nitric oxide synthase of cerebral cortical neurons in embryonic rat. Chin J Vet Sci. 2013;33:102-106