RESVERATRO L ve COQ10’in FOTON ZAYIFLATMA KARAKTERİSTİKLERİ

Bu araştırmada, antioksidanlar ile ele ktro manyetik radyasyon etkileşim olasılığını karakterize eden bir dizi katsayı hesaplanmıştır. Bu amaçla, WinXCom bilgisayar programı 1  ke V'den 100 Ge V'ye kadar enerjilerde çalıştırıldı. Etkin atom sayısı ve elektron yoğunlukları, antioksidanların kütle zayıflama katsayıları ku llan ıla rak hesaplandı. Son olarak, µρ değerlerinin farklı etkileşim mekanizmaları nedeniylegama  enerjisinin  artmasıyla   azaldığı ve incelenen parametrelerin gelen foton  enerjisi ve antioksidanın kimyasal  bileşimine  bağlı olarak değiştiği bulundu. Hesaplanan değerler birbiriyle karşılaştırıldı.

PHOTON ATTENUATION CHARACTERISTICS of CoQ10 and RESVERATROL

In this research, a number of coefficients, which characterize the probability of electromagnetic radiation interaction with the antioxidants, have been calculated. For this purpose, WinXCom computer program was run at energies  from  1 ke V to 100 Ge V. The effective atomic numbers and electron densities were calculated using the mass attenuation coefficients of antioxidant. Finally, it was found that the values of µρ decreased with increasing gamma energy by means of different interaction mechanism and the values of investigated parameters were found to be changed with the incoming photon energy and chemical content of the antioxidants The calculated values were compared with each other.

___

  • Gerward L, Guilbert N, Jensen KB, Levring H. X-ray absorption in the matter . Reengineering XCOM. Radiat Phys Chem, 2001; 60: 23- 24.
  • Gerward L, Guilbert NK, Jensen B, Levring H. WinXCom-a program for calculating X-r ay attenuation coefficients. Radiat Phys Chem. 2004; 71 (3): 653-654.
  • Gowda S, Krishnaveni S, Gowda R. Studies on effective atomic numbers and electron densities in amino acids and sugars in the energy range 30-1333 keV. Nucl Instrum Meth B. 2005, 239 (4), 361–369.
  • Isıklı Z, Oto B. Gamma or X-rays attenuation properties of some biochemical compounds. Rad Effects Defects Solids, 2017; 172 (3-4): 296- 304.
  • Jay achandr an CA. Calculat ed effective atomic number and kerma values for tissue- equivalent and dosimetry materials. Phys Med Biol, 1971; 16 (4): 617.
  • Kovacs E, Keresztes A. Effect of gamma and UV-B/C radiat ion on plant cells. M icron, 2002; 33 (2): 199-210.
  • Manohara S.; Hanagodimath S, Gerward L. Studies on effective atomic number, electron density and kerma for some fatty acids and carbohydrates. Phys Med Biol, 2008; 53 (20): 377-386.
  • Manohara SR, Hanagodimath SM and Gerward L. The effective atomic numbers of some biomolecules calculated by two methods: A comparative study. Med Phys, 2009; 36 (1):137-141.
  • Muta-Takada K, Terada T, Yamanis hi H, Ashida Y, Inomata S, Nishiyama T et al. Coenzyme Q10 protects against oxidative stress-induced cell death and enhances the synthesis of basement membrane components in dermal and epidermal cells. Biofactors. 2009; 35(5): 435–441.
  • Rao BT, Raju MLN, Narasimham KL, Parthasaradhi K, Rao BM. Interaction of low- energy photons with biological materials and the effective atomic number. Med Phys 1985; 12(6): 745-748.
  • Sayyed MI, Issa SA and Auda SH . Assessment of radio- protective properties of some anti-inflammatory drugs. Prog Nuc Ener , 2017; 100: 297- 308.
  • Talevi R, Barbato V, Fiorentino I, Braun S, Longobardi S, Gualtieri R.Protective effects of in vitro treatment with zinc, d-aspartate and coenzyme q10 on human sperm motility, lipid peroxidation and DNA fragmentation. Reprod Bio l Endocrinol. 2013; 16: 11:81
  • Truong VL, Jun M and Jeong WS.Role of r esveratrol in regulation of cellular defense systems against oxidative stress.Biofactors, 2018; 44 (1): 36- 49. Yang NC, L eic hner PK, Hawkins WG. Effective atomic numbers for low energy total photon interactions in human tissues. Med Phys. 1987; 14 (5): 759-766.