ALTINTAŞ (KÜTAHYA-TÜRKİYE) OVASI TARIM TOPRAKLARINDA AĞIR METAL KİRLİLİĞİNİN ARAŞTIRILMASI, ÖNCEL ÇALIŞMA

Dünya nüfusunun hızla artışına bağlı olarak artan beslenme ihtiyacının büyük bir kısmı tarımsal faaliyetler ile sağlanmaktadır. Yoğun kentleşme ve sanayileşme tarım alanlarının yok edilmesine sebep olmakta ve bunlara bağlı olarak ortaya çıkan trafik yoğunluğu, madencilik ve endüstriyel faaliyetler tarım topraklarının kirletilmesine ve geri dönüşü olmayacak şekilde zarar görmesine neden olmaktadır. Ayrıca tarımsal faaliyetler sırasında kullanılan kimyasallar da (pestisid, insektisit vb.) tarım alanlarının kirletilmesinde önemli bir paya sahiptir. Tarım alanlarındaki bu kirliliğin büyük bir kısmını ise ağır metaller (As, Cd, Co, Cr, Pb, Ni, Fe, Cu, Zn vb.) oluşturmaktadır. Ağır metallerce kirlenen topraklardan yetişen zirai ürünler gerek tarımsal verim üzerinde gerekse de besin zincirine girdiğinde insan veya hayvanlar üzerinde olumsuz etkiler oluşturabilmektedir. Altıntaş ovası, Ege Bölgesi’nin iç kısmında Kütahya ilinin yaklaşık 40 km güneyinde yer alan, tarımsal faaliyetlerin yoğun olarak yapıldığı bir bölgedir. Altıntaş ovası üzerinde yöre ekonomisinde önemi olan ayçiçeği ve şeker pancarı gibi sanayi bitkileri, sebze, tahıl ve hayvan yemleri üretimi yapılmaktadır. Kütahya, Afyonkarahisar ile Uşak illerine hizmet veren Türkiye’nin ilk bölgesel havalimanı olan uluslararası Zafer Havalimanı ile Altıntaş ilçe merkezi çalışma alanı Altıntaş Ovası üzerinde kurulu olup Orta Anadolu’daki şehirleri Uşak ve İzmir’e bağlayan transit yollarda yine bu ova üzerinden geçmektedir. Bir öncel çalışma niteliğinde olan bu çalışma da; Altıntaş ovasındaki tarım topraklarının ağır metal kirliliğini değerlendirmek için farklı ürünlerin yetiştiği tarım arazileri üzerinden 15 noktadan örnekleme (0-15 cm) yapılmıştır. Toprak örneklerindeki ağır metal içerikleri ICP-MS ile analiz edilmiştir. Çalışma alanından alınan toprak örneklerinin ağır metal içerikleri sırası ile As için 12.90-70.20 mg/kg; Cr için 29.30-137.70 mg/kg; Cu için 14.44-32.87 mg/kg; Hg için 0.02-0.56 mg/kg; Ni için 70.10-254.20 mg/kg; Pb için 10.01-29.16 mg/kg; Sb için 0.33-1.66 mg/kg ve Zn için 30.50-75.80 mg/kg arasında değişmektedir. Ayrıca Zenginleşme Faktörü (EF), Jeobirikim İndeksi (Igeo), Kirlilik Faktörü (CF) ve Kirlilik Yük İndeksi (PLI) topraklardaki ağır metal kirliliğini değerlendirmek için hesaplanmıştır.

___

  • BARBIERI, M., 2016. The Importance of Enrichment Factor (EF) and Geoaccumulation Index (Igeo) to Evaluate the Soil Contamination. J Geology & Geophysics, 5 (1), 1 -4.
  • BROOKS, R. R., 1972, Geobotany and biogeochemistry in mineral exploration: New York, Harper and Row, 290 p.
  • BUAT-MENARD, P. and CHESSELET, R., 1979. Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth Planet Sci Lett, 42, 399–411.
  • CAI Q., LONG M.L. , ZHU M., ZHOU Q.Z., ZHANG L., LIU J., 2009. Food chain transfer of cadmium and lead to cattle in a lead–zinc smelter in Guizhou, China. Environ Pollut, 157:3078–82.
  • CHAKRAVARTY, I. M. AND PATGIRI, A. D., 2009. Metal Pollution Assessment in Sediments of the Dikrong River, N.E. India Journal of Human Ecology, 27, 63-67.
  • CHARY S. C, KAMALA C. T, RAJ D. S. S., 2008. Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol Environ Safety, 69: 513–24.
  • CHATTERJEE, M., FILHO, E. V. S., SARKAR, S. K., SELLA, S. M., BHATTACHARYA, A., SATPATHYC, K. K., PRASADC, M. V. R., CHAKRABORTYA, S., BHATTACHARYAA, B. D., 2007. Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environ Int, 33, 346–356.
  • CHEN HUAIMAN, 1996. The Heavy Metal Pollution in Soil-Plant System. Beijing: Science Press.
  • CHUNG, S. AND CHON, H.T., 2014. Assessment of the level of mercury contamination from some anthropogenic sources in Ulaanbaatar, Mongolia. J Geochem Explor, 147, 237–244.
  • DUFFUS J., 2002. Heavy metals: a meaningless term (IUPAC Technical report). Pure Appl Chem. 74, 793-807.
  • GIL, C., BOLUDA, R., RAMOS, J., 2004. Determination and evaluation of cadmium, lead and nickel in greenhouse soils of Almeria (Spain). Chemosphere 55 (7), 1027–1034.
  • HAKANSON, L., 1980. An ecological risk index for aquatic pollution control. A sedimentological approach Water Res., 14, 975-1001.
  • KAHVECİOĞLU, Ö., KARTAL, G., GÜVEN, A., TİMUR, S., 2009. Metallerin çevresel etkileri. Metalurji Dergisi, 136, 47-53.
  • KİÇDR, 2017. Kütahya il çevre durum raporu. Kütahya Valiliği Çevre ve Şehircilik İl Müdürlüğü.
  • LI J. L., HE, M., HAN, W., GU, Y., 2009. Analysis and assessment on heavy metal sources in the coastal soils developed from alluvial deposits using multivariate statistical methods. J Hazard Mater. 164: 976–981.
  • LJUNG, K., 2006. Metals in urban playground soils, distribution and bioaccessibility. Doctoral thesis Swedish University of Agricultural Sciences, Uppsala.
  • LOSKA, K., WIECHULA, D., BARSKA, B., CEBULA, E., CHOJNECKA, A., 2003. Assessment of arsenic enrichment of cultivated soils in Southern Poland. Polish Journal of Environmental Studies, 12(2), 187-192.
  • MACHENDER, G., DHAKATE, R., PRASANNA, L., GOVIL, P. K., 2011. Assessment of heavy metal contamination in soils around Balanagar industrial area, Hyderabad, India. Environ Earth Sci, 63, 945–953.Manahan, S.E., 2003. Toxicological Chemistry and Biochemistry. CRC Press, Limited Liability Company (LLC), 3rd edition.
  • MIKO, S., PEH, Z., BUKOVEC, D., PROHIC, E., KASTMÜLLER, Z., 2000. Geochemical baseline mapping and Pb pollution assessment of soils in the karst in Western Croatia. Natura Croatica, 9 (1), 41-59.
  • MÜLLER, G., 1969. Index of geo-accumulation in sediments of the Rhine River. Geo J, 2, 108–118.
  • MÜLLER, G., 1981. Die Schwermetallbelastung der Sedimenten des Neckars und Seiner Nebenflüsse, Chemiker-Zeitung, 6, 157.
  • NICHOLSON, F. A., SMITH, S. R., ALLOWAY, B. J., CARLTON- SMITH, C., CHAMBERS, B. J. 2003. An inventory of heavy metals inputs to agricultural soils in England and Wales. Science of the Total Environment. 311: 205–219.
  • NIEĆ J., BARANOWSKA R., DZIUBANEK G., ROGALA D., 2013. Children’s exposure to heavy metals in the soils of playgrounds, sport fileds, sandpits and kindergarten grounds in the region of Upper Silesia. Journal Ecology and Health 17, 2: 55–62.
  • ÖZBOLAT, G. ve TULİ, A., 2016. Ağır Metal Toksisitesinin İnsan Sağlığına Etkileri. Arşiv Kaynak Tarama Dergisi, 25, 4: 502-521.
  • PACYNA, J. M., WINCHESTER, J. W., 1990. Contamination of the global environment as observed in the Arctic. Palaeogeogr Palaeoclimatol Palaeoecol, 82, 149–57.Pepper, I.L., Gerba, C.P., Brusseau, M.L., 1996. Pollution Science. Academic Press, New York.
  • QUEVAUVILLER, P. and LAVIGNE, R., CORTEZ, L., 1989. Impact of industrial and mine drainage wastes on the heavy metal distribution in the drainage basin and estuary of the Sado River (Portugal). Environ Pollut, 59, 267–86.
  • REIMANN, C. and de CARITAT, P., 2000. Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry. Environ Sci Technol, 34, 5084–91.
  • ROMIC, M., ROMİC, D., 2003. Heavy metals distribution in agricultural topsoils in urban area. Environ. Geol. 43 (7), 795–805.
  • ROSE, A. W., HAWKES, H. E., WEBB, J. S., 1991. Geochemistry in mineral exploration. London: Academic Press.
  • SCHIFF, K. C. and WEISBERG, S.B., 1999. IRon as a reference element for determining trace metal enrichment in Southern California coastal shelf sediments. Marine Environmental Research, 48(2), 161–176.
  • SENGUPTA, S., CHATTERJEE, T., GHOSH, P. B., SAHA, T., 2010. Heavy metal accumulation in agricultural soils around a coal fired thermal power plant (Farakka) in India. Environ Sci Eng, 52(4), 299–306.
  • SUTHERLAND, R. A., 2000. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ Geol, 39, 611–27.
  • THOMSON, I., 1986. Exploration geochemistry: design and interpretation of soil surveys, Rev Econ Geol, 3, 1–18.
  • VURAL, A., 2014. Toprak ve Akasya Ağacı Sürgünlerindeki İz/Ağır Metal Dağılımı, Gümüşhane-Türkiye. Maden Tetkik ve Arama Dergisi, 148: 85-106.
  • ZHANG, C., 2006. Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland. Environmental Pollution. 142: 501–511.
  • ZHAO, Y., XU, X., SUN, W., HUANG, B., DARILEK, J. L., SHI, X., 2008. Uncertainty assessment of mapping mercury contaminated soils of a rapidly industrializing city in the Yangtze River Delta of China using sequential indicator cosimulation. Environ. Monit. Assess. 138 (1-3), 343–355.
  • ZHENG Y., CHEN T., CHEN H., WU H., ZHOU J., LUO, J., HUANG, Z., 2003. The spatial structure and distribution of Ni contents in soils of suburbs of Beijing. Acta Geographica Sinica, 58(3): 470-476. (in Chinese).
  • ZHENG Y., YU K., WU H., HUANG, Z., CHEN, H., WU, X., TIAN, Q., FAN, K., CHEN, T., 2002. Lead concentrations of soils in Beijing urban parks and their pollution assessment. Geographical Research, 21(4): 418-424. (in Chinese).