Research for the spall effect after ballistic impact with finite element method

In this study, the fragmentation occurring with ballistic impact was researched with finite element method by using Ansys Autodyn software, and using different modelling methods, the most accurate and precise method was selected for the problem. After determining the method, the finite element model was generated and solved for two different types of ballistic armor (Al5083 & RHA). Spall distribution was observed and close results obtained between finite element and experimental study. Having good agreement between experimental and numerical study the research continued with spall liner (Kevlar/epoxy) addition after armor plate to reduce spall distribution.

Research for the spall effect after ballistic impact with finite element method

In this study, the fragmentation occurring with ballistic impact was researched with finite element method by using Ansys Autodyn software, and using different modelling methods, the most accurate and precise method was selected for the problem. After determining the method, the finite element model was generated and solved for two different types of ballistic armor (Al5083 & RHA). Spall distribution was observed and close results obtained between finite element and experimental study. Having good agreement between experimental and numerical study the research continued with spall liner (Kevlar/epoxy) addition after armor plate to reduce spall distribution.

___

  • Başaran G. Bird strike analysis. Figes Article, Research&Development Journal, 2013; 1: 8 – 10.
  • Huang J, Ma Z, Ren L, Li Y, Zhou Z, and Liu S. A new engineering model of debris cloud produced by hypervelocity impact. International Journal of Impact Engineering, 2013; 56: 32 – 39.
  • Loft K, Price MC, Cole MJ, and Burchell MJ. Impacts into metal targets at velocities greater than 1 km s -1 : A new online resource for the hypervelocity impact community and illustration of the geometric change of debris cloud impact patterns with impact velocity. International Journal of Impact Engineering, 2013; 56: 47 – 60.
  • Hayhurst CJ and Clegg RA. Cylindrically symmetric SPH simulations of hypervelocity impacts on thin plates. International Journal of Impact Engineering, 1997; 20: 337 – 348.
  • Lee M. Hypervelocity impact into oblique ceramic/metal composite systems. International Journal of Impact Engineering, 2003; 29: 417 – 424. ANSYS® Academic Research, Release 14.0, Autodyn, Material library, ANSYS, Inc.
Usak University Journal of Material Sciences-Cover
  • ISSN: 2147-2785
  • Başlangıç: 2015
  • Yayıncı: Uşak Üniversitesi
Sayıdaki Diğer Makaleler

Effect of bark flour on the mechanical properties of HDPE composites

Nihat Sami Çetin, Nilgül Özmen, Nasır Narlıoğlu, Vedat Çavuş -

Sytentesis of Al-B4C composite coating on low carbon steel by mechanical alloying method

Aykut Canakci, Fatih Erdemir, Temel Varol, Serdar Özkaya, Ramazan Dalmış -

Enhanced properties of an AA7075 based metal matrix composite prepared using mechanical alloying

C. Nazik, N. Tarakcioglu, A. Canakci, T. Varol, S. Ozkaya -

Optimization of hot plate welding parameters of glass fibered reinforced Polyamide 6 (PA6 GF15) composite material by Taguchi method

Umut Kocatüfek, Çınar Yeni, Aydın Ülker, Sami Sayer, Uğur Özdemir -

An investigation on physical properties of polyethylene composite with bentonite, kaolin and calcium carbonate additives

Sencer S. Karabeyoğlu, Nurşen Öntürk -

Research for the spall effect after ballistic impact with finite element method

Volkan Arıkan, Bulut Berk, Ramazan Karakuzu, A. Kaan Toksoy, Onur Sayman -

The investigation of desired product properties of polycaprolactone-hydroxy apatite composites for tissue engineering applications

Yelda Küçükgöksel, Serap Cesur -

Effects of manufacturing defects on thermoformed product quality

Olcay Ekşi, Ertuğrul Selçuk Erdoğan -

The effect of metakaolin and end type of steel fiber on fiber-SIFCON matrix bond characteristics

Çağlar Yalçınkaya, Ahsanollah Beglarigale, Halit Yazıcı -

Electrospinning of nanofibrous polycaprolactone (PCL) and collagen-blended polycaprolactone for wound dressing and tissue engineering

Begüm Zeybek, Mert Duman, Aylin Şendemir Ürkmez -