Isı Pompalı Kurutucular Üzerine Bir Araştırma

Günümüzde ısı pompalı sistemlerin kullanımı ve kurutmada uygulanması günden güne artmaktadır. Bu nedenle ısı pompası tipi, ısı pompası seçimi ve ısı pompasında kullanılacak soğutucu akışkan cinsi oldukça önemlidir. Çalışmada, hava kaynaklı (HAD), yer kaynaklı (GSHPD), kimyasal kaynaklı (CSHPD) ve hibrit kaynaklı ısı pompalı kurutuculara yer verilmektedir. Güneş enerjisi destekli hava kaynaklı ısı pompalı kurutucular (SAHPD) diğer kurutuculara göre, geliştirilmiş kalite kontrolü, daha az enerji tüketimi, yüksek katsayı performansı ve yüksek ısıl verimliliği gibi birçok avantaj sağlamaktadır.

A Review On Heat Pump Dryers

Today, the use of heat pump systems and their application in drying is increasing day by day. For this reason, the type of heat pump, the choice of heat pump and the type of refrigerant to be used in the heat pump are very important. In study, air source (HAD), ground source (GSHPD), chemical source (CSHPD) and hybrid source heat pump dryer are included. Solar assisted air source heat pump dryers (SAHPD), such as improved quality control, lower energy consumption, high coefficient performance and high thermal efficiency have been provide many advantages than the other heat pump dryers.

___

  • Adapa, P. K., Schoenau, G. J., Sokhansanj, S. (2002). Performance study of a heat pump dryer system for specialty crops—part 1: development of a simulation model. International Journal of Energy Research, 26(11), 1001-1019.
  • Aktaş, M., Kara, M. Ç. (2013). Güneş enerjisi ve ısı pompalı kurutucuda dilimlenmiş kivi kurutulması. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 28(4).
  • Aktaş, M., Khanlari, A., Amini, A., Şevik, S. (2017). Performance analysis of heat pump and infrared–heat pump drying of grated carrotusing energy-exergy methodology. Energy Conversion and Management, 132, 327-338.
  • Aktaş, M.,Şevik, S., Özdemir, M. B., & Gönen, E. (2015). Performance analysis and modeling of a closed-loop heat pump dryer for bay leaves using artificial neural network. Applied Thermal Engineering, 87, 714-723.
  • Artnaseaw A.,Theerakulpisut S., Benjapiyaporn C. (2010). Development of a vacuum heat pump dryer for drying chilli, Biosystems engineering, 105, 130–138.
  • Artnaseaw, A., Theerakulpisut, S., Benjapiyaporn, C. (2010). Development of a vacuum heat pump dryer for drying chilli. Biosystems engineering, 105(1), 130-138.
  • ASHRAE: Designation and Safety Classification of Refrigerants. Standard 34-2004, American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Atlanta, USA; 2004.
  • Banks, D. (2012). An introduction to thermogeology: ground source heating and cooling. John Wiley&Sons.
  • Best, R.,Soto, W., Pilatowsky, I., Gutierrez, L. J. (1994). Evaluation of a rice drying system using a solar assisted heat pump. Renewable energy, 5(1-4), 465-468.
  • Britnell, P.,Birchall, S., Fitz-Paine, S., Young, G., Mason, R., Wood, A. (1994). The application of heat pump dryers in the Australian food industry. Drying, 94, 897-903.
  • Castell-Palou, Á., Simal, S. (2011). Heat pump drying kinetics of a pressed type cheese. LWT-Food Science and Technology, 44(2), 489-494.
  • Ceylan, İ., Aktaş, M. (2008). Energy analysis of hazelnut drying system‐assisted heat pump. International Journal of Energy Research, 32(11), 971-979.
  • Ceylan, İ., Gürel, A. E. (2016). Solar-assisted fluidized bed dryer integrated with a heat pump for mintleaves. Applied Thermal Engineering, 106, 899-905.
  • Ceylan, İ., Aktaş, M. and Doğan, H., 2007. Energy and exergy analysis of timber dryer assisted heat pump. Applied Thermal Engineering 27,216-222p.
  • Chapchaimoh, K.,Poomsa-ad, N., Wiset, L., Morris, J. (2016). Thermal characteristics of heat pump dryer for ginger drying. Applied Thermal Engineering, 95, 491-498.
  • Chua, K. J., Mujumdar, A. S., Chou, S. K., Hawlader, M. N. A., Ho, J. C. (2000). Convective drying of banana, guavaandpotatopieces: effect of cyclicalvariations of air temperature on drying kinetics andc olorchange. Drying technology, 18(4-5), 907-936.
  • Coogan RC, Wills RBH. Flavor changes in Asian White radish (Raphanussativus) produced by different methods of drying and salting. International Journal of Food Properties 2008;11(2):253–7.
  • Çengel, Y. A.,Boles, M. A. (2011). Termodinamik: Muhendislik Yaklasımıyla. Pınarbasi, A., Guven Bilimsel, 437.
  • Çolak, N., Kuzgunkaya, E., Hepbasli, A. (2008). Exergeticassessment of drying of mint leaves in a heat pump dryer. Journal of Food Process Engineering, 31(3), 281-298.
  • Daghigh, R., Ruslan, M. H., Sulaiman, M. Y., Sopian, K. (2010). Review of solar assisted heat pump drying systems for agricultural and marine products. Renewable and Sustainable Energy Reviews, 14(9), 2564-2579.
  • Dandamrongrak, R., Mason, R., Young, G. (2003). The effect of pretreatments on the drying rate and quality of dried bananas. International Journal of Food Science&Technology, 38(8), 877-882.
  • Deng, Y.,Wang, Y., Yue, J., Liu, Z., Zheng, Y., Qian, B., Zhao, Y. (2014). Thermal behavior, microstructureand protein quality of squid fillets dried by far-infrared assisted heat pump drying. Food control, 36(1), 102-110.
  • Doymaz, I. (2007). Air-drying characteristics of tomatoes. Journal of Food Engineering, 78(4), 1291-1297.
  • Erdoğan, S., Yılmaz, M., Sahan, B., Ozyurt, O. (2006). Isı Pompası Sistemlerinin Seçimi. Tesisat Mühendisliği Dergisi, 92, 40-49.
  • Fatouh, M., Metwally, M. N., Helali, A. B., Shedid, M. H. (2006). Herbs drying using a heat pump dryer. Energy Conversion and Management, 47(15-16), 2629-2643.
  • Hebbar, H. U., Vishwanathan, K. H., Ramesh, M. N. (2004). Development of combined infrared and hot air dryer for vegetables. Journal of food engineering, 65(4), 557-563.
  • Hossain, M. A., Gottschalk, K., Hassan, M. S. (2013). Mathematical model for a heat pump dryer for aromatic plant. Procedia Engineering, 56, 510-520.
  • Icier, F.,Colak, N., Erbay, Z., Kuzgunkaya, E. H., Hepbasli, A. (2010). A comparative study on exergetic performance assessment for drying of broccoliflorets in three different drying systems. DryingTechnology, 28(2), 193-204.
  • Kaya, A., Aydın, O., Demirtaş, C. (2009). Experimental and theoretical analysis of drying carrots. Desalination, 237(1-3), 285-295.
  • Kılkış, B. İ., 2008. Isı pompalı birleşik ısı ve güç sistemlerinin parametrik değerlendirmesi. Türk Tesisat Mühendisleri Dergisi, 53, 22-25.
  • Kuş, A., (2011) Farklı Kaynaklı Isı Pompalarının Ekonomik Analizi, Yüksek Lisans Tezi, Atatürk Üniversitesi, Erzurum.
  • Kuzgunkaya, E. H., Hepbasli, A. (2007). Exergetic evaluation of drying of laurelleaves in a vertical ground‐source heat pump drying cabinet. International Journal of Energy Research, 31(3), 245-258.
  • Lee, G. H. (2012). Drying Characteristics of Carrot and Green Pumpkin Slices in Waste Heat Dryer. Journal of Biosystems Engineering, 37(1), 36-43.
  • Mirza, M., (2006) Isı Pompalı Kurutucun Isıl Tasarımı, Yüksek Lisans Tezi, Ege Üniversitesi, İzmir.
  • Molina, M. J., Rowland, F. S. (1974). Stratosphericsinkforchlorofluoromethanes- Chlorine atom catalyzed destruction of ozone. In International Conference on the Environmental Impact of Aerospace Operations in the High Atmosphere, 2 nd, San Diego, Calif(pp. 99-104).
  • Mortezapour, H., Ghobadian, B., Khoshtaghaza, M. H., Minaei, S. (2014). Drying kinetics and quality characteristics of saffron dried with a heat pump assisted hybridphotovoltaic-thermal solar dryer. Journal of Agricultural Science and Technology, 16(1), 33-45.
  • Ogura, H., Hamaguchi, N., Kage, H., Mujumdar, A. S. (2004). Energy and cost estimation for application of chemical heat pump dryer to industrial ceramics drying. Drying technology, 22(1-2), 307-323.
  • Park, K. J., Jung, D. (2009). Performance of heat pumps charged with R170/R290 mixture. Applied energy, 86(12), 2598-2603.
  • Prasertsan S. ve Saen-saby P. (1998). Heat Pump Drying of Agricultural Materials Drying Technology, 16(1&2), 235-250.
  • Prasertsan, S.,Saen‐Saby, P., Ngamsritrakul, P., Prateepchaikul, G. (1997). Heat pump dryer part 3: Experimental verification of the simulation. International journal of energy research, 21(8), 707-722.
  • Punlek C, Pairintra R, Chindaraksa S, Maneewan S. Simulation design and evaluation of hybrid PV/T assisted desiccant integrated HA-IR drying system (HPIRD). Food BioprodProcess 2009; 87:77–86.
  • Rahman M. S., Perera C. O. ve Thebaudb C. (1998). Desorption isotherm and heat pump drying kinetics of peas. Food Research International, 30 (7), 485-491.
  • Rossi, S. J., Neues, L. C., Kicokbusch, T. G. (1992). Thermodynamic and energetic evaluation of a heat pump applied to the drying of vegetables. Drying, 92, 475-8.
  • Slim, R., Zoughaib, A., Clodic, D. (2008). Modeling of a solar and heat pump sludge drying system. International journal of refrigeration, 31(7), 1156-1168.
  • Strommen I, Eikevik TM, Odilio AF. (1999). Optimum design and enhanced performance of heat pump dryers. In: Abudullah K, Tamaunan AH, Maujumdar AS, editors. Proceedings of the first Asian-Australian drying conference, vol. 68.
  • Strømmen, I., Eikevik, T. M., Alves-Filho, O., Syverud, K. (2004, August). Heat pump drying of sulphate and sulphitecellulose. In Proceedings of the 14th international drying symposium (IDS 2004), vol B. Sao Paulo(pp. 1225-1232).
  • Strumitto C, Jones PL, Z˙ ytta R. Energy aspects in drying. In: Mujumdar AS, editor. Handbook of industrial drying. Boca Raton, FL, USA: Taylor & Francis Inc.; 2006. p. 1084.
  • Sun, L., Islam, M. R., Ho, J. C., Mujumdar, A. S. (2005). A diffusion model for drying of a heat sensitive solid under multiple heat input modes. Bioresource Technology, 96(14), 1551-1560.
  • Sunthonvit, N., Srzednicki, G., Craske, J. (2007). Effects of drying treatments on the composition of volatile compounds in dried nectarines. Drying Technology, 25(5), 877-881. 42
  • Şevik, S. (2014). Experimental investigation of a new design solar-heat pump dryer under the different climatic conditions and drying behavior of selected products. Solar Energy, 105, 190-205.
  • Şevik, S., Aktaş, M., Doğan, H., Koçak, S. (2013). Mushroom drying with solar assisted heat pump system. Energy Conversion and Management, 72, 171-178.
  • Taşeri, L., Aktaş, M., Şevik, S., Gülcü, M., Seçkin, G. U., Aktekeli, B. (2018). Determination of drying kinetics and quality parameters of grape pomace dried with a heat pump dryer. Food Chemistry, 260, 152-159.
  • Tosun S. (2009). Bazı Tarımsal Ürünler İçin Isı Pompalı Bir Kurutucunun Geliştirilmesi ve Termodinamik Analizi. Doktora Tezi. Ege Üniversitesi Fen Bilimleri Enstitüsü.
  • Tsotsas E., ve Mujumdar A.S., (2012). Modern Drying Technology, Energy Saving, Wiley VchVerlag&Co., Weinheim, Germany. United Nations Environment Programme, Montreal protocol on substance sthatdepletethe ozone layer, Final Act; 1987.
  • Van Blarcom, A., Mason, R. L. (1988). Low humidity drying of macadamia nuts. In Proceedings of the Fourth Australian Conference on Tree and Nut Crops (p. 239).
  • Vijaya Raghavan GS, Venkatesh S. Graindrying. In: Mujumdar AS, editor. Handbook of industrial drying. Boca Raton, FL, USA: Taylor & Francis Inc.; 2006. p. 571.
  • Wang, Y., Zhang, M., Mujumdar, A. S., Chen, H. (2014). Drying and quality characteristics of shredded squid in an infrared-assisted convective dryer. Drying technology, 32(15), 1828-1839.
  • Yamankaradeniz, R., Horuz, İ., Kaynaklı, Ö., Coşkun, S., Yamankaradeniz, N., 2009. Soğutma Tekniği ve Isı Pompası Uygulamaları. Dora Yayınları, 690, Bursa.
  • Yang, Z.,Li, X., Tao, Z., Luo, N., Yu, F. (2018). Ultrasound-assisted heat pump drying of pea seed. Drying Technology, 1-12.
  • Zielinska, M., Zapotoczny, P., Alves-Filho, O., Eikevik, T. M., Blaszczak, W. (2013). A multi-stage combined heat pump and microwave vacuum drying of green peas. Journal of Food Engineering, 115(3), 347-356.