Bileşik Yük Modelinin ÇBAG Tabanlı Rüzgar Türbini Üzerindeki Etkilerinin İncelenmesi

Lineer olmayan yük modellerinin sistem üzerinde oluşturmuş olduğu etkiler güç kalitesi açısından önemli bir konudur. Bu çalışmada, şebekeye bağlı Çift Beslemeli Asenkron Generatör (ÇBAG) tabanlı rüzgar türbininde lineer olmayan yük modellerin etkisi incelenmiştir. Lineer olmayan yük modeli olarak üstel, sabit empedans, sabit akım, sabit aktif güç (ZIP) ve asenkron motor kullanılmıştır. ÜstelZIP-Asenkron Motor biçiminde bileşik yük modeli oluşturulmuştur. Farklı zamanlar içerisinde bileşik yük modelleri devreye girip çıkmıştır. Bileşik yük modellerinin kararlılık analizi ve salınım durumları incelenmiştir. Bu benzetim çalışması MATLAB/SIMULINK ortamında gerçekleştirilmiştir. Bileşik yük modeli analizinde 34.5 kV bara gerilimi, ÇBAG çıkış gerilimi, ÇBAG elektriksel moment, ÇBAG d-q eksen stator akım ve ÇBAG d -q eksen rotor akım değişimleri incelenmiştir.  Yapılan çalışma sonucunda kısa süre olarak devre

Investıgatıon Of Effects On DFIG Based Wınd Turbıne Of Composıte Load Modelıng

The effects of nonlinear load models on the system are an important issue in terms of power quality. In this study, the effect of nonlinear load models in the grid-connected Doubly Fed Induction Generator (DFIG) based wind turbine was investigated. Exponential, constant impedance, constant current, constant active power (ZIP) and induction motor are used as nonlinear load model. Composite load modeling is consist of exponential-ZIP-induction motor. Composite load modeling is turn on and turns off system within different times. Analysis and stability analysis of the composite load modeling were examined. This simulation study was carried out in MATLAB / SIMULINK environment. 34.5 kV bus voltage, DFIG terminal voltage, DFIG electrical torque, DFIG d-q axis stator current variations and DFIG d-q axis rotor current variations in composite load model analysis are examined. As a result of, it has been seen that composite 

___

  • Sun, T., Chen, Z., Blaabjerg, F. (2005). Transient Stability of DFIG Wind Turbines at an External Short Circuit Fault. Wind Energy, 8, 3, 345-360.
  • García-Gracia, M., Comech, M. P., Sallan, J., Llombart, A. (2008). Modelling Wind Farms for Grid Disturbance Studies, Renew Energy, 33, 9, 2109–2121.
  • Yang, L., Xu, Z., Ostergaard, J., Dong, Z. Y., Wong, K. P. (2012). Advanced control Strategy of DFIG Wind Turbines for Power System Fault Ride Through, IEEE Transactions on Power Systems, 27, 2, 713-722.
  • Döşoğlu, M. K. (2016). Hybrid Low Voltage Ride Through Enhancement for Transient Stability Capability in Wind Farms, International Journal of Electrical Power Energy Systems, 78, 655-662.
  • Gaillard, A., Poure, P., Saadate, S., Machmoum, M. (2009). Variable Speed DFIG Wind Energy System for Power Generation and Harmonic Current Mitigation, Renewable Energy, 34, 6, 1545-1553.
  • Jing, J. I. N., Qian, A. I., Yan, Z. H. A. O. (2007). Reactive Compensation Principle and Simulation of FACTS Device in Wind Farm [J], Electric Power Automation Equipment, 8, 58-60.
  • Liu, M., Pan, W., Quan, R., Liu, H. Li. T., Yang, G. (2018). A Short-Circuit Calculation Method for DFIG-Based Wind Farms, IEEE Access, 6, 52793-52800.
  • Holdsworth, L., Charalambous, I., Ekanayake, J. B., Jenkins, N. (2004). Power System Fault Ride Through Capabilities of Induction Generator Based Wind Turbines, Wind Engineering, 28, 4, 399-409.
  • Döşoğlu, M. K., Dursun, M. (2018). Investigation with ZIP load Model of Voltage Stability Analysis in Wind Turbine integrated Power System,’’ 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 1-5, Ankara, Türkiye.
  • Döşoğlu, M. K., Arsoy, A. B. (2014). Modeling and Simulation of Static Loads for Wind Power Applications, Neural Computing and Applications, 25, 5, 997-1006.
  • Wu, F., Zhang, X. P., Godfrey, K., Ju, P. (2007). Small Signal Stability Analysis and Optimal Control of a Wind Turbine With Doubly Fed İnduction Generator, IET Generation Transmission and Distribution, 1, 5, 751-760.
  • Ekanayake, J. B., Holdsworth, L., Jenkins, N. (2003). Comparison of 5th Order and 3rd Order Machine Models for Double Fed Induction Generators (DFIG) Wind Turbines, Electric Power Systems Research, 67, 3, 207-215.
  • Krause, P. C. (2002). Analysis of Electric Machinery, 2th ed. New York. McGraw-Hill.
  • Slootweg, J. G., Polinder, H., Kling, W. L. (2001). Dynamic Modelling of A Wind Turbine with Doubly Fed Induction Generator, 2001 Power Engineering Society Summer Meeting, Canada.
  • Döşoğlu, M. K., Arsoy, A. B. (2016). Enhancement of a Reduced Order Doubly Fed İnduction Generator Model for Wind Farm Transient Stability Analyses, Turkish Journal of Electrical Engineering Computer Sciences, 24, 4, 2124-2134.
  • Döşoğlu, M. K. (2017). Enhancement of SDRU and RCC for Low Voltage Ride Through Capability in DFIG Based Wind Farm, Electrical Engineering, 99, 2, 673-683. Ma, J., Han, D., He, R. M., Dong, Z. Y., Hill, D. J. (2008). Reducing Identified Parameters of Measurement-Based Composite Load Model, IEEE Transactions on Power Systems, 23, 76-83.
  • Li, Y., Chiang, H. D, Choi, B. K., Chen, Y. T., Huang, D. H., Lauby, M. G. (2007). Representative Static Load Models for Transient Stability Analysis: Development and Examination, IET Generation Transmission and Distribution, 1, 422-431.