DOĞALGAZDAN HİDROJEN ÜRETİLMESİ VE SALINAN KARBONDİOKSİTİN TUTULMASI

Kısa ve orta vadede artan hidrojen talebi fosil yakıtlardan, özellikle de doğalgazdan karşılanacaktır. Bu yöntem, hidrojen atmosfere CO2 salınımları olmadan, makul fiyata üretilebileceği için çevresel ve ekonomik açıdan da uygundur. Bunun için iki temel seçenek vardır. Birincisi hidrojenin doğalgazdan geleneksel bir yöntem olan ve CO2’un tutularak tecrit edilmesini de içeren buhar–reformasyon yöntemiyle eldesidir. Açığa çıkan CO2 okyanus diplerinde depolanabilir ya da petrol ve doğalgaz yatakları gibi jeolojik formasyonlarda tutularak tecrit edilebilir. Bir diğer alternatif yöntem ise doğalgazın yüksek sıcaklıklarda saf hidrojen ve karbona ayrışımıdır. Elde edilen hidrojen enerji taşıyıcısı olarak kullanılabilir. Karbon; yapı malzemeleri, elektrik üretimi ve toprağın ıslahı gibi çeşitli alanlarda kullanılmak üzere pazara sunulabilir. Bu çalışmada, doğalgazdan geleneksel buhar-reformasyon prosesiyle hidrojen üretimi ve doğalgazın yüksek sıcaklıkta katalitik olarak hidrojen ve karbona ayrıştırılması yöntemleri teknolojik, çevresel ve ekonomik açılardan karşılaştırılmıştır.

HYDROGEN PRODUCTION FROM NATURAL GAS AND CAPTURES OF CARBON DIOXIDE EMISSIONS

In the near and medium term, increasing demand for hydrogen will be covered from fossil fuels, especially natural gas. This method of hydrogen production without releasing CO2 into the atmosphere, producing a reasonable price for the environmental and economic is also appropriate. In order to achieve this, there are two basic options. The first one is that hydrogen production from natural gas as a conventional method and including CO2 sequestration is steam-reforming method. Emitted CO2 can be captured in the bottom of the ocean or sequestrated in geological formations such as oil and natural gas deposits. The second way is natural gas decomposition to produce pure hydrogen and oxygen at high temperatures. Hydrogen obtained from natural gas decomposition can be used as energy carrier. Carbon can be presented to the market such as building materials, electricity generation and improvement of soil to be used in various fields. In this study, hydrogen production process via conventional steam-reforming of natural gas and hydrogen and carbon as natural gas into high-temperature catalytic decomposition methods to technological, environmental and economic aspects were compared.

___

  • Öztürk, M., Hidrojen Üretim Metotlarının İncelenmesi, Doktora Tezi, SDÜ Fen Bilimleri Enstitüsü, 2009.
  • Middleton, P., Larson, R., Niclas, M., Collins, B., Renewable Hydrogen Forum: A Summary of Expert Opinion and Policy Recommendations. Forum presented by the American Solar Energy Society. Washington, D.C. National Press Club, 473 p, 2003.
  • Kaya, Y., et al., A Grand Strategy for Global Warming. Paper presented at Tokyo Conference on Global Environment, September 1989.
  • Veziroglu, T. N., Barbir, F., Hydrogen Energy Technologies. Emerging Technology Series. Vienna, Austria: United Nations Industrial Development Organization, 122 p, 1998.
  • Spath, P. L., Mann, M.K., Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming, NREL, 2001.
  • Öztürk, M., Güneş Enerjili Kimyasal Reaktörlerin İncelenmesi, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Süleyman Demirel Üniversitesi, 2005.
  • Muradov, N., Hydrogen From Fossil Fuels Without CO2 Emissions. In Advance in hydrogen energy. Edited by C.E.G. Padro and F Lau, New York; Kluwer Academic/Plenum Publishers, 1-16, 2002.
  • Doctor, R.D., Molburg, J.C., Brockmeier, Stiegel, G., Designing for Hydrogen, Electricity, and CO2 Recovery from a Shell Gasification Based System. Presented at the 18th Annual International Pittsburgh Coal Conference, December 4-7, Newcastle, New South Wales, Australia. Edited by Sperling D., Cannon, J.S., Burlington, MA: Elsevier Academic Press, 2001.
  • International Energy Agency Greenhouse Gas Program (IEA-GHGP), 2005. http://www.ieagreen.org.uk. Erişim Tarihi: 17.05.2008
  • Pacala, S.W., Could Carbon Sequestration Solve the Problem of Global Warming? In The hydrogen economy: Opportunities, cost, barriers, and R&D needs. Washington, D.C.: The National Academics Press, 83 p. 2004.
  • USDOE (U.S. Department of Energy), Hydrogen Posture Plan: An Integrated Research, Development and Demonstration Plan. Washington, DC: U.S., Department of Energy, 24 p, Muradov, N., Veziroglu, N., From Hydrocarbon to Hydrogen-Carbon to Hydrogen Economy, International Journal of Hydrogen Energy, 30, 225-237, 2005.
  • Hydrogen Internal Combustion, Ford Motor Company, 2004. http://www.ford.com/en/innovation/engineFueltechnology/hydogenInternalCombustion.htm. Erişim Tarihi: 27.08.2006
  • Cooper, J., Turning Carbon into Electricity. Science and technology review. Lawrence Livermore National Laboratory, Livermore, CA, 2001.
  • Steinberg M., Cooper J., Cherepy N., High Efficiency Direct Carbon and Hydrogen Fuel Cells for Fossil Fuel Power Generation. Proceedings of the AIChE Meeting, Spring, 2002.
  • Glaser, B,. Lehmann, J., Zech, W., Ameliorating Physical and Chemical Properties of Highly Weathered Soils in The Tropics with Charcoal–A Review, Biol Fert Soils, 35:219,