TRANSONİK KAVİTE AKIŞININ AÇIK KAYNAKLI HESAPLAMALI AEROAKUSTİK ANALİZİ

Bu çalışmada Mach sayısı 0.85 ve Reynolds sayısı 1.3x107 için zamana bağlı 3 boyutlu kavite akışı ve kavite boyunca anlık basınç salınımlarından kaynaklı oluşan gürültü açık kaynaklı Hesaplamalı Akışkanlar Dinamiği çözücüsü olan OpenFOAM kullanılarak incelenmiştir. Akış alanı modellemesinin gürültü oluşumuna etkisini gözlemlemek için iki farklı akış alanı modellemesi yapılmıştır. Akış alanı modelinin etkisine ek olarak duvar bölgesindeki ağ sıklığı ve ağdaki hücrelerin büyüme oranlarının aeroakustik bulgular üzerindeki etkisi incelenmiştir. Üç boyutlu akış alanının zamana bağlı incelemelerinde, Büyük Burgaç Benzetimi (LES) ve Ayrık Burgaç Benzetimi (DES) olmak üzere iki türbülans modeli kullanılmıştır. LES analizlerinde küçük girdap yapılarını çözmek için Smagorinsky ve WALE olmak üzere iki ağ-altı ölçek modeli kullanılmıştır. DES analizlerinde Spalart-Allmaras tabanlı DDES, IDDES ve SST k-ω tabanlı DES olmak üzere üç model kullanılmıştır. Transonik kavite için hesaplanan sayısal sonuçlar deneysel ve nümerik sonuçlarla hem konum hem frekans uzayında akustik sinyal verisi için karşılaştırılarak doğrulanmıştır. Analizler sonucu elde edilen konum uzayındaki Ortalama Ses Basınç Düzeyi verisi kavite gürültüsüne ait deneysel veri ile benzer davranışı gösterse de 8-10 desibellik bir sapma görülmüştür. Frekans uzayındaki Ses Basınç Düzeyi sonuçlarında ise Rossiter modları belirgin şekilde gözükmektedir ve hem deneysel hem nümerik çalışmaya yakın sonuçlar elde edilmiştir.

Open-Source Computational Aeroacoustics Analysis of Transonic Cavity Flow

In this study, unsteady three dimensional cavity flow and aerodynamically generated noise for Mach number 0.85 and Reynolds number 1.3x107 were investigated using OpenFOAM. In order to observe the effect of flow field modeling on noise generation, two flow field modeling were performed. In addition to the effect of the flow field model, the effect of the density of the ağ r the wall region and the growth rates of the cells on the aeroacoustics findings were investigated. Two turbulence models were used for unsteady investigations, namely the Large-Eddy Simulation (LES) and the Detached-Eddy Simulation (DES). Two subgrid-scale models, Smagorinsky and Wall-Adapting Local Eddy-Viscosity, were used to resolve small eddies in LES. Three models, namely Spalart-Allmaras based DDES, IDDES and SST k-ω based DES, were used in DES analyses. Results calculated for the cavity were verified by comparing the reference studies results with the acoustic signal data in both location and frequency space. Although the Overall Sound Pressure Level data obtained as a result of the analyzes showed similar behavior with the experimental data, a deviation of 8-10 decibels was observed. In the Sound Pressure Level results, Rossiter modes are visible and results are compatible with both experimental and numerical studies.

___

  • 1. Abderrahmane, B., Rezoug, T., & Dala, L. (2019). Passive control of cavity acoustics via the use of surface waviness at subsonic flow. Aircraft Engineering and Aerospace Technology, 91(2), 296–308. https://doi.org/10.1108/AEAT-01-2018-0061
  • 2. Avallone, E. A., & Baumeister, T. I. (1996). Marks’ Standard Handbook for Mechanical Engineers (Tenth Edit). New York.
  • 3. Bacci, D., & Saddington, A. J. (2023). Hilbert–Huang Spectral Analysis of Cavity Flows Incorporating Fluidic Spoilers. AIAA Journal, 61(1), 271–284. https://doi.org/10.2514/1.J061917
  • 4. Cattafesta, L. N., Song, Q., Williams, D. R., Rowley, C. W., & Alvi, F. S. (2008). Active control of flow-induced cavity oscillations. Progress in Aerospace Sciences, 44(7–8), 479–502. https://doi.org/10.1016/j.paerosci.2008.07.002
  • 5. Cui, P. et al. (2022). Improved Delayed Detached-Eddy Investigations on the Flow Control of the Leading-Edge Flat Spoiler of the Cavity in the Low-Aspect-Ratio Aircraft. Aerospace, 9(9), 1–27. https://doi.org/10.3390/aerospace9090526
  • 6. Demir, O., Çelik, B., & Güleren, K. M. (2018). Transonı̇k akişlarda gı̇rdap üreteçlerı̇nı̇n kavı̇te gürültüsüne etkı̇sı̇. In VII. ULUSAL HAVACILIK VE UZAY KONFERANSI (pp. 1–10). Samsun. Retrieved from http://www.uhuk.org.tr/bildiri.php/UHUK-2018-117
  • 7. Demir, O., Çelik, B., & Güleren, K. M. (2021). Noise Reduction of Open Cavities By Passive Flow Control Methods At Transonic Speeds Using Openfoam. Journal of Aeronautics and Space Technologies, 14(2), 193–208. Retrieved from https://jast.hho.msu.edu.tr/index.php/JAST/article/view/467
  • 8. Fadıl, A. C., & Zafer, B. (2022a). Kararsız Transonik Kavite Akışında Ağ Yapısı ve Türbülans Modelinin Akustik Basınç Üzerindeki Etkisinin OpenFOAM ile Değerlendirilmesi. In 9. Ulusal Havacılık ve Uzay Konferansı (pp. 1–10). İzmir. Retrieved from http://uhuk.org.tr/bildiri.php/UHUK-2022-081
  • 9. Fadıl, A. C., & Zafer, B. (2022b). Parallel Aeroacoustic Computation of Unsteady Transonic Cavity Flow via Open CFD Source Codes. In 7. Ulusal Yüksek Başarımlı Hesaplama Konferansı.
  • 10. Fadıl, A. C., & Zafer, B. (2023). Parallel aeroacoustic computation of unsteady transonic weapon bay using detached-eddy simulation via open computational fluid dynamics source codes. Concurrency and Computation: Practice and Experience, (February), 1–17. https://doi.org/10.1002/cpe.7675
  • 11. Gelisli, K. A., Aradag, S., Tascioglu, Y., & Ozer, M. B. (2019). Computational fluid dynamics and proper orthogonal decomposition based control of flow over supersonic cavities. 25th AIAA/CEAS Aeroacoustics Conference, 2019, (May), 1–18. https://doi.org/10.2514/6.2019-2694
  • 12. Greenshields, C. (2018). OpenFOAM user guide Version 6. The OpenFOAM Foundation.
  • 13. Guleren, K. M., Turk, S., Demircan, O. M., & Demir, O. (2018). Numerical Analysis of the Cavity Flow subjected to Passive Controls Techniques. IOP Conference Series: Materials Science and Engineering, 326(1), 0–6. https://doi.org/10.1088/1757-899X/326/1/012015
  • 14. Heller, H. H., Holmes, D. G., & Covert, E. E. (1971). Flow-induced pressure oscillations in shallow cavities. Journal of Sound and Vibration, 18(4), 545–553. https://doi.org/10.1016/0022-460X(71)90105-2
  • 15. Kolmogorov, A. N. (1941). The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 434(1890), 9–13. https://doi.org/10.1098/rspa.1991.0075
  • 16. Lawson, S. J., & Barakos, G. N. (2010). Computational fluid dynamics analyses of flow over weapons-bay geometries. Journal of Aircraft, 47(5), 1605–1623. https://doi.org/10.2514/1.C000218
  • 17. Lawson, S. J., & Barakos, G. N. (2011). Review of numerical simulations for high-speed, turbulent cavity flows. Progress in Aerospace Sciences, 47(3), 186–216. https://doi.org/10.1016/j.paerosci.2010.11.002
  • 18. Leonard, A. (1975). Energy cascade in large-eddy simulations of turbulent fluid flows. Advances in Geophysics, 18(PA), 237–248. https://doi.org/10.1016/S0065-2687(08)60464-1
  • 19. Loupy, G. J. M., Barakos, G. N., & Kusyumov, A. (2017). Acoustic field around a transonic cavity flow. International Journal of Aeroacoustics, 16(6), 507–535. https://doi.org/10.1177/1475472X17730459
  • 20. Nightingale, D., Ross, J., & Foster, G. (2005). Cavity unsteady pressure measurements— examples from wind-tunnel tests. Aerodynamics & Aeromechanics Systems Group, Technical Report Version 3, QinetiQ.
  • 21. Nilsson, S., Yao, H. D., Karlsson, A., & Arvidson, S. (2022). Effects of Aeroelastic Walls on the Aeroacoustics in Transonic Cavity Flow †. Aerospace, 9(11). https://doi.org/10.3390/aerospace9110716
  • 22. Rajkumar, K., Tangermann, E., Klein, M., Ketterl, S., & Winkler, A. (2023). Time ‑ efficient simulations of fighter aircraft weapon bay. CEAS Aeronautical Journal, (123456789). https://doi.org/10.1007/s13272-022-00630-1
  • 23. Rossiter, J. (1964). Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Royal Aircraft Establishment, TR 64037.
  • 24. Shur, M. L., Spalart, P. R., Strelets, M. K., & Travin, A. K. (2008). A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. International Journal of Heat and Fluid Flow, 29(6), 1638–1649. https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001
  • 25. Smagorinsky, J. (1963). General circulation experiments with the primitive equations. Monthly Weather Review, 91, 99–164. https://doi.org/https://doi.org/10.1175/1520- 0493(1963)091<0099:GCEWTP>2.3.CO;2
  • 26. Spalart, P. R., Deck, S., Shur, M. L., Squires, K. D., Strelets, M. K., & Travin, A. (2006). A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoretical and Computational Fluid Dynamics, 20(3), 181–195. https://doi.org/10.1007/s00162-006-0015-0
  • 27. Spalart, P. R., Jou, W. H., Strelets, M. K., & Allmaras, S. R. (1997). Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach. In Proceedings of first AFOSR international conference on DNS/LES (Vol. 1, pp. 137–47). Greyden Press.
  • 28. Vanco, L., & Pierce, A. D. (1998). Acoustics: An Introduction to Its Physical Principles and Applications. Computer Music Journal (Vol. 22). https://doi.org/10.2307/3680971
  • 29. Zafer, B., & Cosgun, F. (2018). Kavite Akışının Aeroakustik Analizi. Isı Bilimi ve Tekniği Dergisi, 38(2), 25–38.
  • 30. Zafer, B., & Konan, O. (2017). Kavite – Kanat Kesiti Etkileşiminin Aeroakustik Analizi. Dokuz Eylul University-Faculty of Engineering Journal of Science and Engineering, 19(59), 279–294. https://doi.org/10.21205/deufmd. 2017195523
  • 31. Zheng, Y., Zhang, J., Li, H., Wu, X., & Jia, H. (2022). Flow Characteristic Study of High-speed Cavity Based on Detached-eddy Simulations. Journal of Physics: Conference Series, 2280(1). https://doi.org/10.1088/1742-6596/2280/1/012009
Uludağ Üniversitesi Mühendislik Fakültesi Dergisi-Cover
  • ISSN: 2148-4147
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2002
  • Yayıncı: BURSA ULUDAĞ ÜNİVERSİTESİ > MÜHENDİSLİK FAKÜLTESİ