DİKEY TİP TOPRAK KAYNAKLI BİR ISI POMPASININ SİMÜLASYONU

Bu çalışmada İstanbul ilinde yer alan bir restoranın ısıtılması ve kullanım sıcak su ihtiyacının karşılanmasında dikey tip bir toprak kaynaklı ısı pompası (TKIP) kullanılmıştır. Tasarlanan sistem TRNSYS (Zamana bağlı sistem simülasyonu) programı yardımıyla simüle edilmiş ve sistemin performansı enerji tüketimi açısından incelenmiştir. Ele alınan mahallin sıcaklığı, TKIP sistemi yardımıyla kış aylarında 22 ºC’de sabit tutulurken, tüm yıl boyunca günde dört kere (6:00, 8:00, 20:00 ve 22:00) saatlerinde 15 dakika süreyle 55 ºC sıcaklıkta 300 l/h su kullanımı gerçekleşmektedir. Kullanılan TKIP ünitesi nominal ısıtma kapasitesi 78228 kJ/h, nominal güç tüketimi 18193 kJ/h’dır. Analiz sonucunda TKIP sisteminin yıllık toplam güç tüketimi 3922,88 kW, ısı pompası ve tüm sistemin yıllık ortalama performans katsayıları sırasıyla 3,33 ve 1,81 olarak hesaplamıştır. Tüketilen enerjinin %54,36’ü ısı pompası, %26,78 ısıtıcılar, %13,64’ü pompalar, %5,22’i ise fan tarafından tüketilmektedir.

Simulation of Vertical Type Ground Source Heat Pump

In this study, vertical type ground source heat pump (GSHP) was used to heat a restaurant located in Istanbul province and to meet the usage hot water requirement. The designed system is simulated with the help of the TRNSYS (time dependent system simulation) program then its performance and energy consumption are examined. While room temperature was kept constant at 22 ºC in winter with the help of the GSHP system, 300 l/h of water at 55ºC was drawn to use for 15 minutes during the whole year (at 06:00 a.m., 08:00 a.m., 20:00 p.m. and 22:00 p.m.). The rated heating capacity of the heat pump used is 78228 kJ/ h and the rated power consumption is 18193 kJ/h. As a result of the analysis, the total annual power consumption of the GSHP system is 3922.88 kW, the annual average performance coefficients of the heat pump and the whole system are calculated as 3.33 and 1.81 respectively. Of the energy consumption were obtained as 54.36% by the heat pump, 26.78 % by electrical heaters, 13.64% by pumps and 5.22% by fan.

___

  • Emmi, G., Zarrella, A., Carli M.D., Galgaro A. (2015) An analysis of solar assisted ground source heat pumps in cold climates, Energy Conversion and Management, 106: 660–675, doi.org/10.1016/j.enconman.2015.10.016
  • Gao, J., Li, A., Xu, X., Gang, W., Yan, T. (2018) Ground heat exchanger: Applications, technology integration and potentials for zero energy buildings, Renewable Energy, 128: 337-349, doi: 10.1016/j.renene.2018.05.089
  • Han, Z., Zheng, M., Kong, F., Wang, F., Li, Z., Bai, T. (2008) Numerical simulation of solar assisted ground-source heat pump heating system with latent heat energy storage in severely cold area, Applied Thermal Engineering, 28: 1427–1436. doi:10.1016/j.applthermaleng.2007.09.013
  • Januševičius, K. and Streckiene, G. (2013) Solar Assisted Ground Source Heat Pump Performance in Nearly Zero Energy Building in Baltic Countries, Environmental and climate technologies, 48-56, doi: 10.2478/rtuect-2013-0007
  • Ji,Y., Duanmu, L., Li,X., Airaksinen, M.,Wang, Z. (2017) Simplified method to determine the collector area of solar-assisted ground-source heat pump system, Procedia Engineering, 205: 1138–1145, doi: 10.1016/j.proeng.2017.10.420
  • Jonas, D, Frey, G., Thesis, D. (2017) Simulation and performance analysis of combined parallel solar thermal and ground or air source heat pump systems, Solar Energy, 150: 500-511, doi:: 10.1016/j.solener.2017.04.070
  • Li, Y. H. and W.C. Kao (2017) Performance analysis and economic assessment of solar thermal and heat pump combi systems for subtropical and tropical region, Solar Energy, 153: 301-316, doi : 10.1016/j.solener.2017.05.067
  • Li, H., Xu, W., Yu, Z., Wu, J., & Yu, Z. (2017b). Discussion of a combined solar thermal and ground source heat pump system operation strategy for office heating. Energy and Buildings, 162(2018), 42-53. doi: 10.1016/j.enbuild.2017.12.021
  • Miglani, S., Orehounig, K., Carmeliet, J. (2017) Design and optimization of a hybrid solar ground source heat pump with seasonal regeneration, Energy Procedia, 122: 1015–1020, doi: 10.1016/j.egypro.2017.07.468
  • Rad, F. M., Fung, A. S., Leong, W. H. (2013) Feasibility of combined solar thermal and ground source heat pump systems in cold climate, Canada, Energy and Buildings, 61: 224–232, doi: 10.1016/j.enbuild.2013.02.036
  • Thygesen, R., Karlsson, B. (2013) Economic and energy analysis of three solar assisted heat pump systems in near zero energy buildings, Energy and Buildings, 66: 77–87, doi: 10.1016/j.enbuild.2013.07.042
  • Wang, E., Fung, A. S.,Qia, C., Leong, W. H. (2012) Performance prediction of a hybrid solar ground-source heat pump system, Energy and Buildings, 47: 600–611, doi: 10.1016/j.enbuild.2011.12.035
  • Youssef, W. And Tassou, S.A. (2017) Effects of latent heat storage and controls on stability and performance of a solar assisted heat pump system for domestic hot water production, Solar Energy, 150: 394-407, doi: 10.1016/j.solener.2017.04.065
  • Zhai, X.Q., Cheng, X.W., Wang, R.Z., (2017) Heating and cooling performance of a minitype ground source heat pump system. Applied Thermal Engineering, 111: 1366–1370, doi:10.1016/j.applthermaleng.2016.03.117
  • Zhang, S., Zang, L., Zhang, X. (2017) Performance evaluation of existed ground source heat pump systems in buildings using auxiliary energy efficiency index: Cases study in Jiangsu, China, Energy and Buildings, 147: 90-100, doi: 10.1016/j.enbuild.2017.04.052
  • Zhang, J., Su,S., Liu, L., Zhou, C., Shi L (2015) TRNSYS Simulation of Hybrid Ground Source Heat Pump System Based on Cooling Conditions, International Forum on Energy, Environment Science and Materials, (IFEESM 2015), doi: 10.2991/ifeesm-15.2015.87
  • Zhou, S., Cui, W., Zhao, S., Zhu, S., (2016) Operation analysis and performance prediction for a GSHP system compounded with domestic hot water (DHW) system. Energy and Buildings, 119: 153–163, doi:10.1016/j.enbuild.2016.03.024
  • Zogou, O. and Stamatelos, A. (2009) Energy and Buildings: Efficiency, Air Quality, and Conservation, Chapter 11: Application of Building Energy Simulation in the Sizing and Design Optimization of an Office Building and its HVAC Equipment, Nova Science Publisher, 279-324.