Türkiye’de Faaliyet Gösteren Emeklilik Sigorta Şirketlerinde Özsermaye Tahmini: Bulanık Hedef Programlama Örneği
Günümüz dünyasında her birey, kurum veya tüzel kişilikler faaliyetlerinden dolayı finansal risklere maruz kalıp maddi kayıp yaşayabilir ya da maddi olmayan başka kayıplarda yaşayabilirler. Bu kayıpların aynı zamanda bir kısmı insan sağlığı ile ilgilidir ve birçoğu ölümle sonuçlanan olaylardır. Bu tip kayıpları telafi etmenin en bilinen şekli bu tip olaylar için önceden yapılan maddi ya da maddi olmayan kayıp karşılığı yapılan sigortadır. Bu şekilde sigortalılar, karşı karşıya bulundukları tehlikelerin neden olabileceği, parayla ölçülebilen maddi zararlarını, belirlenen küçük miktarlarda ödemiş oldukları primler yoluyla paylaşmaktadırlar. Sigorta mali anlamda her türlü kaybı telafi etmenin bir yolu olarak ifade edilir. Sigorta, sigorta şirketlerinin sağladığı farklı kapsamları olan hizmetler olup maddi kayıpları telafi etmeyi amaçlar. Sigorta, aynı türden tehlikeyle karşı karşıya olan bireylerin, belirli bir miktar para ödemesi şeklinde toplanan miktarın, sadece o tehlikenin gerçekleşmesi sonucu doğrudan zarara uğrayanların zararını karşılamada kullanıldığı, bir risk transfer sistemidir. Her Sigorta şirketleri yükümlülüklerini yerine getirmek için ve faaliyetlerinden kaynaklanabilecek potansiyel risklerden oluşabilecek zararlardan dolayı gerekli olan miktarda özsermayeyi bulundurmak zorundadırlar. Gerekli olan sermayenin hesaplanması sigorta şirketleri için bazen karmaşık olabilir. Bu yüzden esnek çözüm metotları kullanılabilir. Bu çalışmada bulanık hedef programlama kullanılarak Türkiye’de faaliyet gösteren emeklilik sigorta şirketlerinin özsermayelerini hesaplamada kullanılan değişkenlerin tahmini yapılmıştır. Çalışmada emeklilik sigorta şirketlerin 2016-1 ve 2019-4 dönemini kapsayan verileri kullanılmıştır. Yapılan çalışma sonucunda özsermaye tahmininde en etkin değişkenlerin dönem net karı (DNK) ve kar yedekleri (KRY) olduğu görülmüştür. Geçmiş yıl karları (GYK) ve geçmiş yıl zararlarının (GYZ) ise etkin olmayan değişkenler olduğu görülmüştür.
Estimation Equity of Pension Insurance Company Operating in Turkey: Fuzzy Goal Programming Example
In today's world, every individual, institution or legal entity may experience financial losses due to their activities and experience financial losses or other intangible losses. Some of these losses are also related to human health, and many are fatal events. The most well-known way to compensate for such losses is the insurance made in advance for material or intangible losses for such events. In this way, the insured share the financial losses that can be measured with money, which may be caused by the dangers they face, through the premiums they have paid in small amounts determined. Insurance is expressed as a way to compensate for any loss financially. Insurance is a service with different scopes provided by insurance companies and aims to compensate for financial losses. Insurance is a risk transfer system in which individuals who face the same type of danger, the amount collected in the form of paying a certain amount of money, is used only tocover the losses of those who are directly damaged by the realization of that danger. Insurance companies are required to keep the necessary amount of equity to fulfill their obligations and losses that may arise from potential risks arising from their activities. Calculating the required capital can sometimes be complicated for insurance companies. Therefore, flexible solution methods can be used. In this study, estimates of the variables used to calculate the equity of pension insurance companies operating in Turkey are made using fuzzy goal programming. The data of pension insurance companies covering 2016-1 and 2019-4 periods were used in the study. As a result of the study, it was seen that the most effective variables in the estimation of equity were period net profit (DNK) and profit reserves (KRY). Previous year profits (GYK) and past year losses (GYZ) were observed to be ineffective variables.
___
- Aouni, B., Colapinto, C., & La Torre, D. (2014). A fuzzy goal programming model for venture capital investment decision making. INFOR: Information Systems and Operational Research, 52(3), 138-146. https://doi.org/10.3138/infor.52.3.138
- Bairoliya, N. (2019). Pension plan heterogeneity and retirement behavior. European Economic Review, 116, 28-59. https://doi.org/10.1016/j.euroecorev.2019.03.005
- De, M., Mangaraj, B. K., & Das, K. B. (2018). A fuzzy goal programming model in portfolio selection under competitive-cum-compensatory decision strategies. Applied Soft Computing, 73, 635-646. https://doi.org/10.1016/j.asoc.2018.09.006
- Guo, Y., Tian, M., Han, K., Johnson, K., & Zhao, L. (2016). What determines pension insurance participation in China? Triangulation and the intertwined relationship among employers, employees and the government. The International Journal of Human Resource Management, 27(18), 2142-2160. https://doi.org/10.1080/09585192.2016.1164219
- Iskander, M. G. (2004). A fuzzy weighted additive approach for stochastic fuzzy goal programming. Applied Mathematics and Computation, 154(2), 543-553. https://doi.org/10.1016/S0096- 3003(03)00734-3
- Jana, D. K., Sahoo, P., & Koczy, L. T. (2017). Comparative study on credibility measures of type-2 and type-1 fuzzy variables and their application to a multi-objective profit transportation problem via goal programming. International Journal of Transportation Science and Technology, 6(2), 110-126. https://doi.org/10.1016/j.ijtst.2017.06.002
- Jayaraman, R., Liuzzi, D., Colapinto, C., & Malik, T. (2017). A fuzzy goal programming model to analyze energy, environmental and sustainability goals of the United Arab Emirates. Annals of Operations Research, 251(1-2), 255-270. https://doi.org/10.1007/s10479-015-1825-5
- Jiménez, M., Bilbao‐Terol, A., & Arenas‐Parra, M. (2018). A model for solving incompatible fuzzy goal programming: an application to portfolio selection. International Transactions in Operational Research, 25(3), 887-912. https://doi.org/10.1111/itor.12405
- Kocadağlı, O., & Keskin, R. (2015). A novel portfolio selection model based on fuzzy goal programming with different importance and priorities. Expert Systems with Applications, 42(20), 6898-6912. https://doi.org/10.1016/j.eswa.2015.04.047
- Komsiyah, S., & Centika, H. E. (2018). A Fuzzy Goal Programming Model for Production Planning in Furniture Company. Procedia Computer Science, 135, 544-552. https://doi.org/10.1016/j.procs.2018.08.207
- Lee, A. H., Chen, H. H., & Kang, H. Y. (2017). A conceptual model for prioritizing dam sites for tidal energy sources. Ocean Engineering, 137, 38-47. https://doi.org/10.1016/j.oceaneng.2017.03.039
- Lin, C. C., Liu, Y. T., & Chen, A. P. (2016). Hedging an option portfolio with minimum transaction lots: A fuzzy goal programming problem. Applied Soft Computing, 47, 295-303. https://doi.org/10.1016/j.asoc.2016.06.006
- Nielsen, P. H. (2006). Utility maximization and risk minimization in life and pension insurance. Finance and Stochastics, 10(1), 75-97. https://doi.org/10.1007/s00780-005-0166-7
- Nomani, M. A., Ali, I., Fügenschuh, A., & Ahmed, A. (2017). A fuzzy goal programming approach to analyse sustainable development goals of India. Applied Economics Letters, 24(7), 443- 447. https://doi.org/10.1080/13504851.2016.1200178
- Özkan, M.M. (2003). Bulanık Hedef Programlama. Ekin Yayınevi.
- Saxena, L. K., Jain, P. K., & Sharma, A. K. (2018). A fuzzy goal programme with carbon tax policy for Brownfield Tyre remanufacturing strategic supply chain planning. Journal of Cleaner Production, 198, 737-753. https://doi.org/10.1016/j.jclepro.2018.07.005
- Talonen, A., Holmlund-Rytkönen, M., & Strandvik, T. (2018). Mental models of customer ownership in the executive board: A case study in the pension insurance sector. Journal of Co-operative Organization and Management, 6(1), 1-10. https://doi.org/10.1016/j.jcom.2018.02.001
- Wong, J. T. (2020). Dynamic procurement risk management with supplier portfolio selection and order allocation under green market segmentation. Journal of Cleaner Production, 253, 119835. https://doi.org/10.1016/j.jclepro.2019.119835
- Wu, L. C., & Tsai, I. C. (2014). Three fuzzy goal programming models for index portfolios. Journal of the Operational Research Society, 65(8), 1155-1169. https://doi.org/10.1057/jors.2013.47
- Yang, Y., & Zhou, W. (2017). Regional Disparities in China’s Basic Pension Insurance and Labor Migration. The Chinese Economy, 50(5), 323-338. https://doi.org/10.1080/10971475.2017.1345269