ÖĞRETMENLERİN ARGÜMANTASYON TABANLI ARASTIRMA SORGULAMA YÖNTEMİNİ UYGULAMA SEVİYELERİNİ ETKİLEYEN SORU SORMA STRATEJİLERİ

Bu çalışmanın amacı, öğretmenlerin Argümantasyon Tabanlı Araştırma Sorgulama Yöntemini uygulama seviyelerini etkileyen soru sorma çeşitlerini incelemek ve açıklamaktır. Argümantasyona dayalı araştırma sorgulama yöntemi olarak Argümantasyon Tabanlı Bilim Öğretimi (The Science Writing Heuristic Approach) kullanılmıştır. Argümantasyon tabanlı öğretim yöntemi, sarmal bir argümantasyon yöntemidir. Bu yöntem içerisinde öğrenciler, yazılı ve sözlü tartışmalarını kendileri deneylerine göre oluştururlar. Sınıf seviyeleri reforma dayalı öğretim izleme protokolüyle (RTOP) belirlenmiştir. RTOP sonuçlarına göre sınıflar üç farklı seviyeye ayrılmıştır. Bu sınıflar arasından, üç öğretmenin sınıfı, düşük, orta ve yüksek seviye uygulamalarından birer tane olmak üzere incelenmiştir. Verilerin analizi gömülü teori yöntemi ile yapılmıştır. Gömülü teori yöntemi, farklı seviyelerdeki öğretmenlerin, soru sorma çeşitlerindeki özellikleri göstermek için kullanılmıştır. Bu yönteme göre seçilmiş üç seviyedeki sınıfların videoları yazıya dökülmüş ve bu yazılardan kodlar üretilmiştir. Bu kodlamalar, öğretmen ve öğrencilerin soru sormadaki çeşitleriyle ve soru sorma doğrultularıyla oluşturulmuştur. Sonuçlar göstermiştir ki öğretmenler, her bir seviyede farklı miktarda soru sorma çeşitleri kullanmıştır. Tanımlayıcı türden soru çeşitleri düşük seviyedeki sınıfta kullanılırken, tartışmacı sorular yüksek seviyedeki sınıfta daha çok miktarda yer almıştır. Soruların doğrultusu da uygulama seviyelerine göre değişiklik göstermiştir. Bu çalışma göstermiştir ki daha kapsamlı sorular (soruları kavrayıcı niteliği olan ve öğrencilerin deneylerini açıklayıcı türden olan) argümantasyonun başlamasını sağlamıştır. Ayrıca, öğretmenler, öğrenciler arasında sınıf içinde tartışmayı başlatmak ve devam ettirmek için soru sormayı sağlayıcı farklı çeşitlerde sorular kullanmalıdır

THE QUESTIONING STRATEGIES AFFECTING TEACHERS’ IMPLEMENTATION LEVELS OF THE ARGUMENT-BASED INQUIRY

The purpose of the study was to explore and explain the questioning types affecting teachers’ implementation levels of the Argument-Based Inquiry to distinguish the patterns of elementary science classroom. The implementation of argument based teaching method was based on the Science Writing Heuristic Approach as it is an immersive argument based inquiry method. The grounded theory qualitative design was used in this study to show the patterns in questioning types of teachers from different implementation levels. The classroom levels were determined with the Reformed Based Teaching Observation Protocol (RTOP). According to results of RTOP, teachers’ implementation levels were assessed in three levels. Among these classes, three teachers’ classrooms were examined one each from the low, the medium, and the high level of the implantations. The results indicated that teachers used different amount of questioning types in each level of class. While the amount of descriptive questions was used in the most in the lower level classes, the amount of argumentative questions was placed in the most in high level class. The questions’ orientations also differed according to implementation levels. The study showed that using more comprehensive questions initiated the argumentation in the classroom and teachers should also use multiple type of questions to enable other students to ask each other questions to start and continue the argumentation in the classes The National Educations Standards (NRC, 1996) strongly encourage teachers to use inquiry in their classrooms. The dilemma when teaching with inquiry is the inadequate amount of student participation and interaction (Osborne 2010). Given the current emphasis on inquiry in science education, it is critical for science teachers to have students develop argumentation skills with their ideas during the inquiry process (Ford 2008). Having students formulate argumentation is the way to promote students’ interaction and so students develop reasoning and critical thinking skills with argumentation (Katchevich, Hofstein, & Mamlok-Naaman, 2013). The Science Writing Heuristic Approach is the method to establish and promote argumentation through argument based inquiry with combining the writing. Teachers play an important role in initiating and elaborating argument in the classroom. The results of the study indicate that the quality and the frequency of students’ voice are strongly related to the teacher’s questioning patterns. The key point here is that when teachers use SWH, their pedagogical orientation needs to be changed. During pedagogical development, teachers are required to use questions to maintain the discussion in their classrooms. However, not every teacher has the same level of change in their pedagogical orientation. This leads to different levels of implementation of the SWH approach in the classrooms. The difference manifests in the teacher’s questioning skills and type. Therefore, the purpose of the study is to explore and explain different level of teachers’ implementations of argument based inquiry in terms of questioning skills of teachers and students to distinguish the patterns of each level when teaching with SWH in the science classroom. The Science Writing Heuristic (SWH) is a framework, which emphasizes the importance of language use in learning, and integrates argument into scientific inquiry. The Science Writing Heuristic (SWH) designs learning activities using written and oral argument in laboratory and classroom settings. The research shows that students are not capable of participating in scientific argumentation because they have inadequate knowledge about the goals and processes of scientific argumentation (Osborne, 2010). The SWH approach is the method that facilitates understanding of and participation in argumentation by using inquiry. The grounded theory qualitative design was used in this study. The aim is the study to show different patterns of the classroom; thus, the transcripts of videos and classroom were examined to determine the codes. Codes are the method in the grounded theory because in the grounded theory, the aim is to see new patterns and so new coded were used which comes from the data and existing codes are not used. Data includded the teachers video tracripts. Three videos were chosen depending on teachers’ implementation levels. Each of the videos was transcribed and used for analysis. The Reformed Teacher Observation Protocol (RTOP) was used to evauate the teachers’ implementation levels. Three teachers, one from each level of low, medium, and low, were chosen according to implementation level of RTOP from 38 teachers. Results showed that at the low level class, the type of questioning varied. Teachers started with descriptive questions and asked also comprehensive questions. The numbers of questions were low and posed by and answered by teachers. Students just did the activities, followed the teachers’ instructions, and confirmed what she asked. Medium level showed that the teacher used different types of questions including orderly descriptive, argumentative, and comprehensive questions. Teachers used more questions to start argumentation, particularly at this level. Even though most of the questions were descriptive, these questions followed by comprehensive questions. At the high level, teachers used the same questioning types. However, the number of each questioning type was different from the other two levels. Students also asked questions and critiqued each other’s investigations. Thus, argumentation talk was observed between students. The teacher also used more questions than the previous two levels. The discussion went from student-oriented to student to student-oriented to teacher, and teacher-oriented to students. the classroom environment is the essential factor. Teachers should provide non-threatening environment to students. By doing this will ensure higher student participation in the classrooms. This study showed that the type of questions determines the environment of the classroom. In conclusion, this study presented important findings on the factors and dilemmas while using question strategies, thus providing teachers and educators a pathway to overcome issues when using the SWH approach. Teaching with SWH is important because in the traditional approach, students participate in the activities cook book style, which does not enable them to comprehend science truly because their duty is only to follow the instructions’ steps without reasoning

___

  • Bell, P. (2004). Promoting students’ argument construction and collaborative debate in the science classroom. In M. C. Linn, E. A. Davis, & P. Bell (Eds.), Internet environments for science education (pp. 115–144). Mahwah, NJ: Lawrence Erlbaum.
  • Choi, A., Klein, V. & Hershberger, S. (2015). Success, Difficulty, and Instructional Strategy to Enact an Argument-Based Inquiry Approach: Experiences of Elementary Teachers. International Journal of Science and Math Education 13(5), 991-1011.
  • Choi, A., Notebaert, A., Diaz, J., & Hand, B. (2010). Examining arguments generated by year 5, 7 and 10 students in science classrooms. Research in Science Education, 40(2), 149-169.
  • Corbin, J., & Strauss, A. (2008). Strategies for qualitative data analysis. In J. Corbin (Ed.), Basics of qualitative research: Technique and procedures for developing grounded theory (3rd ed.). Thousand Oaks, CA: Sage Publications.
  • Patton, MQ. (2001). Qualitative Evaluation and Research Methods (2nd Edition). Thousand oaks, CA: Sage Publications.
  • Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84, 287–312.
  • Ford, M. (2008). ‘Grasp of practice’ as a reasoning resource for inquiry and nature of science understanding. Science & Education, 17, 147–177.
  • Hand, B., Wallace, C. W., & Yang, E. M. (2004). Using a Science Writing Heuristic to enhance learning outcomes from laboratory activities in seventh‐grade science: quantitative and qualitative aspects. International Journal of Science Education, 26(2), 131-149.
  • Katchevich, D., Hofstein, A., & Mamlok-Naaman, R. (2013). Argumentation in the chemistry laboratory: Inquiry and confirmatory experiments. Research in Science Education, 43(1), 317-345.
  • Keys, C. W. & Bryan, L. A. (2001). Co-constructing inquiry-based science with teachers: Essential research for lasting reform. Journal of Research in Science Teaching, 38(6), 631–645.
  • Martin, A. M., & Hand, B. (2009). Factors affecting the implementation of argument in the elementary science classroom. A longitudinal case study. Research in Science Education, 39(1), 17-38.
  • Miles, M. B., & Huberman, A. M. (1994). Early steps in analysis. In M. B. Miles & A. M. Huberman (Eds.), Qualitative data analysis: An expanded sourcebook (2nd ed). Thousand Oaks, CA: SAGE publications. National Research Council (1996).
  • National science education standards. Washington DC: National Academy Press.
  • Norton-Meier, L. A., Hand, B., & Ardasheva, Y. Examining Teacher Actions Supportive of Cross-Disciplinary Science and Literacy Development among Elementary Students.
  • Nam, J., Choi, A., & Hand, B. (2011). Implementation of the science writing heuristic (SWH) approach in 8th grade science classrooms. International Journal of Science and Mathematics Education, 9(5),1111-1133.
  • Newton, P., Driver, R. & Osborne, J. (1999). The place ofargumentation in the pedagogy of school science. International Journal of Science Education, 21(5), 553–576.
  • Osborne, J. (2010). Arguing to learn in science: The role of collaborative, critical discourse. Science, 328, 463–466.
  • Osborne, J., Erduran, S. & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10),994–1020.
  • Sawada, D., Piburn, M., Falconer, K., Turley, J., Benford, R., & Bloom, I. (2000). Reformed teaching observation protocol(RTOP) (Tech. Rep No. IN00-1). Tempe, AZ: Arizona State University, Arizona Collaborative for Excellence in the Preparation of Teachers
  • Villanueva, M. G., & Hand, B. (2011). Science for all: engaging students with special needs in and about science. Learning Disabilities Research & Practice, 26(4),233-240.
Turkish Studies (Elektronik)-Cover
  • ISSN: 1308-2140
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2006
  • Yayıncı: Mehmet Dursun Erdem
Sayıdaki Diğer Makaleler

ORTAOKUL MATEMATİK ÖĞRETMENLERİNİN MATEMATİKSEL İLETİŞİM BECERİSİNE YÖNELİK GÖRÜŞLERİNİN İNCELENMESİ

SELAHATTİN ARSLAN, İLKNUR ÖZPINAR

DUYGUSAL UYARTI KULLANIMININ ÖĞRENCİLERİN KELİME HAZİNESİ GELİŞTİRME SÜRECİNE VE KELİME KALICILIK DÜZEYİNE ETKİLERİ

ADNAN OFLAZ, ADNAN OFLAZ

11. SINIF ÖĞRENCİLERİNİN BİLİŞSEL YAPILARINDAKİ DEĞİŞİMİN KELİME İLİŞKİLENDİRME TESTİ KULLANARAK İNCELENMESİ: KİMYASAL DENGE ÖRNEĞİ

Mustafa TOPRAK, GÜLTEN ŞENDUR

İLKOKULLARDA GÖREV YAPMAKTA OLAN ÖĞRETMENLERİN KAYNAŞTIRMA EĞİTİMİNE İLİŞKİN DUYGU, TUTUM VE KAYGILARININ DEĞERLENDİRİLMESİ

AHMET ÜSTÜN, Mine BAYAR

7. SINIF FEN VE TEKNOLOJİ DERSİ ÖĞRETİM PROGRAMI “İNSAN VE ÇEVRE” ÜNİTESİ ÖĞRENCİ KAZANIMLARININ GERÇEKLEŞME DÜZEYİNİN BELİRLENMESİ

Ömer Faruk BOZAN, Ömer YILAYAZ

ÖĞRETMENLERİN ARGÜMANTASYON TABANLI ARASTIRMA SORGULAMA YÖNTEMİNİ UYGULAMA SEVİYELERİNİ ETKİLEYEN SORU SORMA STRATEJİLERİ

Brian HAND, Nurcan KELEŞ

OKUL ÖNCESİ ÖĞRETMEN ADAYLARININ ÖZEL EĞİTİMLE İLGİLİ BAZI KAVRAMLARA YÖNELİK GÖRÜŞLERİNİN İNCELENMESİ

Tanju GÜRKAN, Azize UMMANEL

ÖĞRETMEN ADAYLARININ BİLİMSEL ARAŞTIRMA ÖZYETERLİKLERİ VE ÖĞRETMENLİK MESLEĞİNE YÖNELİK TUTUMLARI AÇISINDAN DEĞERLENDİRİLMESİ

FERDİ BAHADIR, MURAT TUNCER

5. SINIF ÖĞRENCİLERİNİN MATEMATİKSEL MUHAKEME BECERİLERİ ÜZERİNE BİR ÇALIŞMA

Erdem SÜLEYMANOĞLU, İrem YILDIZ, ESEN ERSOY

16-21 YAŞ ARASI ELİT DÜZEYDEKİ TAKIMLARIN GENÇ FUTBOLCULARININ DUYGUSAL ZEKÂ DÜZEYLERİNİN İNCELENMESİ

YUSUF SOYLU, MELİH NURİ SALMAN, SİNAN AYAN