FEN EĞİTİMİNDE MODEL VE MODELLEME, ÖĞRETMENLER, ÖĞRETMEN ADAYLARI VE ÖĞRENCİLER: ALANYAZIN TARAMASI

Bu derleme çalışmasının amacı, alanyazında bulunan, model ve modelleme konusundaki çalışmaları incelemek, bu kavramların yapılmış tanımlarını derlemek, aynı zamanda, modeller ve modelleme konusunda fen bilgisi öğretmenleri, fen bilgisi öğretmen adayları ve farklı düzeylerdeki öğrencilerin ilgili kavramlara ilişkin düşüncelerini ve onların bu konudaki eksikliklerini ortaya koymaktır. Ayrıca çalışmanın fen eğitimi araştırmacıları ve fen bilgisi öğretmenleri için model ve modelleme konusunda başvurulacak bir kaynak olması açısından faydalı olacağı düşünülmektedir. Alanyazında bulunan ve öğretmenler ile yapılan çalışmalar, öğretmenlerin model ve modelleme kavramlarını tanımlamada ve modellerin amaçları, özellikleri, sınıflandırılması ve hedefle olan ilişkileri ile fen eğitimindeki yeri ve önemi konusunda yeterince bilgi sahibi olmadıklarını göstermektedir. Modellerin gerçeğin basitleştirilmiş şematik temsili ve soyut kavramların anlaşılması için gerekli araçlar olduklarını düşünmektedirler. Modellerin temsil ve açıklama fonksiyonları hakkında bilgi sahibi olmalarına karşın tahmin fonksiyonu hakkında bilgiye sahip olmadıkları görülmektedir. Derslerde model kullanan öğretmen sayısının düşük olduğu ve bunların da bilinçli olmadığı görülmektedir. Ayrıca, fen eğitiminde kullanılmakta olan modellerin yetersiz olduğu ve yeni modellerin geliştirilmesi gerektiği konusunda öğretmenlerin taleplerinin olduğunu ve derslerde mevcut modellerin kullanımı ve yeni modellerin geliştirilmesi konusunda desteğe ihtiyaçları olduğunu göstermektedir. Alanyazındaki çalışmalar öğretmen adaylarının modeller ve modelleme konularında bilgilerinin yetersiz olduğunu göstermektedir. Ayrıca modellerin gerçeğin bir kopyası olduğunu, bununla birlikte görsel veya somut bir temsili olarak görmektedirler. Modeller ve modelleme soyut konuların öğretilmesinde etkili olduğu ve derslerde daha çok kullanılması gerektiğini düşünmektedirler. Diğer yandan, kendi aralarında iletişim kurma ve bilgi paylaşımında önemli olduğuna inanmaktadırlar. Alanyazında bulunan ve farklı düzeydeki öğrencilerle yapılan çalışmalar model ve modelleme etkinliklerinin öğrenci başarısı, öğrenci motivasyon ve tutum üzerine olumlu etki yaptığını göstermektedir. Ayrıca derslerde model kullanımının geleneksel öğretime göre daha etkili olduğu ve mevcut bilgilerin öğrenilmesi ve yeni bilgi oluşturmada kolaylık sağladığı ortaya konulmuştur. Ayrıca çalışma sonuçları model kullanımının soyut kavramları somutlaştırma ve kalıcı ve anlamlı öğrenmeyi sağlamada önem taşıdığını göstermektedir

MODELS AND MODELING IN SCIENCE EDUCATION, TEACHERS, PROSPECTIVE TEACAHERS AND STUDENTS: LITERATURE REVIEW

This study is intended to review some of the selected researches carried out on science teachers, prospective science teachers, and students’ understanding of model and modelling. The review puts together the important finding of the researches and summaries on the one hand, the definitions of related concepts and on the other hand, their ideas about these concepts and the difficulties students encountered in understanding and using models. Therefore, this study would be beneficial for the researchers and lecturers in science education. This study shows that science teachers have not sufficient knowledge about definition of the models and modelling used in science education. They have also insufficient knowledge about the aims, characteristics and classification of models. They believe that the models are a simple schematic representation of real and the tools to understand abstract concepts. They have sufficient knowledge about the representative and explanatory function of models but not about predictive function of models. The low number of science teachers uses models in science course and they are not conscious. For science teachers, the models used in science course are limited and the use of them is insufficient. Therefore, it should be developed new models for different subjects. Studies in literature show that prospective science teachers’ knowledge about models and modelling is insufficient. In addition, they define the models as a copy and visual and concrete representation of the real. They think that models and modelling are effective in the teaching of abstract concepts. It should be used more in science course. Therefore, they believe that models play an important role in communicating and sharing information with each other. Studies on different level of students shows that the use of models positively effects student achievement, motivation, and attitude. In addition, the use of models in science course is more effective than traditional teaching method and it plays an important role in learning concepts and creating new knowledge. On the other hand, results showed that the use of models is important in concretization of abstract concepts and plays an important role in removing misconceptions, understanding scientific processes and developing student problem solving skills. This study is intended to review the selected researches carried out on science teachers, prospective science teachers, and students’ understanding of model and modelling. The review puts together the important finding of the researches and summaries on the one hand, the definitions of related concepts and on the other hand, their ideas about these concepts and the difficulties students encountered in understanding and using models. Therefore, this study would be beneficial for the researchers and lecturers in science education. Using models is inevitable in science education, which deals with abstract concepts (Treagust et. al., 2002). Paton (1996) defined scientific models as scientific and mental activities that facilitate a person’s understanding of phenomena that seem complex. Different researchers have set forth a variety of definitions for model. According to Host (1989), a model is an actual tool of representation but Drouin (1988) regards it as something that is used in place of something else. Bissuel (2001) defined it as a tool of communication. The literature describes three main functions of models. Martinand (1990) states that models are used in representation of an event or system that needs to be explained. Genzling and Pierrard (1994) assert that a model is explanatory only when a connection can be made between the different definers of the system that needs to be explained because of a particular characteristic or change in the characteristic of an event. According to Drouin and Astolfi (1992), a model provides the opportunity to speculate about the different stages of a developing process or system transformation, without having to consider the current state. In this study, an analysis about definition for models, functions of models, classification of models, and limitation of models as well as definition of modelling has been realized. The concepts of model and modelling that are a part of the science and technology curriculum (2006) for grades 4-8 and the new science curriculum (2013) for grades 3-8 were examined in the first stage of the research. Later, a review was made of existing international literature related to these concepts in science education. Articles found have been firstly reviewed in terms of the definition of model and modelling, classification, properties, functions, and limitations of the models. Afterwards articles have been investigated in terms of; - the models in science teaching, - science teachers-model-modelling, - prospective science teachers -model-modelling and, - primary and high school students-model-modeling. In this perspective, the present study is the first literature review article in science education and will be a source for researchers and science teachers. This study showed that science teachers have not sufficient knowledge about definition of the models and modelling used in science education. They have also insufficient knowledge about the aims, characteristics and classification of models. They believe that the models are a simple schematic representation of real and the tools to understand abstract concepts. They have sufficient knowledge about the representative and explanatory function of models but not about predictive function of models. The low number of science teachers uses models in science course and they are not conscious. For science teachers, the models used in science course are limited and the use of them is insufficient. Therefore, it should be developed new models for different subjects. When reviewing the literature in terms of "representation", "description" and "predictive" features of models, in one article, teachers highlight representative approach of models, in four articles, the teachers highlight the descriptive approach of the models, and in two articles, they highlight the predictive approach of models. This data shows that they use models for describing a property to be taught whereas they have not enough knowledge about representative and predictive features of models. Studies on prospective science teachers and model - modelling show that their knowledge about models and modelling is insufficient. In addition, they define the models as a copy and visual and concrete representation of the real. They think that models and modelling are effective in the teaching of abstract concepts. It should be used more in science course. Therefore, they believe that models play an important role in communicating and sharing information with each other. In this issue, reviewed papers show that, in four papers, prospective science teachers have not enough knowledge about models and modeling, in two papers, the teachers perceive the models as representation of concrete object or the copy of the reality. Studies on different level of students show that the use of models positively effects student achievement, motivation, and attitude. In addition, the use of models in science course is more effective than traditional teaching method and it plays an important role in learning concepts and creating new knowledge. On the other hand, the use of models is important in concretisation of abstract concepts and plays an important role in removing misconceptions, understanding scientific processes and developing student problem solving skills. This study shows that students have not sufficient knowledge about models and have difficulties in describing the components and functions of models. Students believe that they need to be taught that the models can be revised and reformed. Therefore, for them, the models used in science course are inadequate. When reviewing 25 papers related to the students’ knowledge and ideas about models and modeling, in 18 papers, the researchers showed that the use models in the lessons is more effective than traditional teaching methods. In addition, it was determined that, in three papers, the use of models has the psitive effects in removing misconceptions. Considering the results of this study, it should be supported science teachers, prospective science teachers and students in the following topics; - converting negative attitudes to positive, - completing the missing conceptual knowledge in terms of the models and modelling- increasing experience to use the models and increasing experience to develop the modes. It should be given the priority to science teachers and prospective science teachers. Then, it should be focused on the students. Finally, the research should be designing in order to analyze the effects of the model and modeling activities on concept learning, conceptual understanding and meaningful learning.

___

  • Abak, A., Eryılmaz, A., Yılmaz, S., & Yılmaz, M. (2001). Effects of bridging analogies on students’ misconceptions about gravity and inertia. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 20, 1-8.
  • Acher, A., Arc`a, M., & Sanmart´i, N. (2007). Modeling as a teaching learning process for understanding materials: A case study in primary education. Science Education, 91, 398- 418.
  • Barab, S. A., Hay, K. E., Barnett, M., & Keating, T. (2000) Virtual solar sysytem project: Building understanding through model building. Journal of Research in Science Teaching, 37(7), 719-756.
  • Berber C. N., & Güzel, H. (2009). Fen ve matematik öğretmen adaylarının modellerin bilim ve fendeki rolüne ve amacına ilişkin algıları. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 21, 87-97.
  • Bilgin, İ., & Geban, Ö. (2001). Benzetişim (analoji) yöntemi kullanarak lise 2. sınıf öğrencilerinin kimyasal denge konusundaki kavram yanılgılarının giderilmesi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 20, 26-32.
  • Bissuel, G. (2001). Et si la physique était symbolique?. Paris: PUFC.
  • Buckley, B. C. (2000). Interactive multimedia and model-based learning in Biology. Science Education, 22(9), 895-935.
  • Coll, R. K., & Treagust D. F. (2003). Learners’ mental models of metallic bonding: A cross-age study. Science Education, 87, 685-707.
  • Cokelez, A. (2009). İlköğretim ikinci kademe öğrencilerinin tanecik kavramı hakkındaki görüşleri: Bilgi dönüşümü. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 36, 64-75.
  • Cokelez, A. (2012). Junior high school students’ ideas about the shape and size of the atom. Research in Science Education, 4(42), 673-686.
  • Çilenti, K. (1985). Fen eğitimi teknolojisi. Ankara: Kadıoğlu Matbaası.
  • Danusso, L., Testa, I., & Vicentini, M. (2010). Improving prospective teachers’ knowledge abouth scientific models and modelling: Design and evaluation of a teacher education intervention. International Journal of Science Education, 32(7), 871-905.
  • Drouin, A. -M. (1988). Le modèle en questions. Aster, 7, 1-20.
  • Drouin, A. -M., & Astolfi, J. -P. (1992). La modélisation à l’école élémentaire, in. Enseignement et apprentissage de la modélisation en science. Paris: INRP.
  • Ergin, İ., Özcan, İ. & Sarı, M. (2012). Farklı akademik unvanlara sahip fen öğretmenlerinin branşlara göre model ve modelleme hakkındaki görüşleri. Journal of Educatıonal and instructional Studies in the World, 2(1), 142-159.
  • Everett, S. A., Otto, C. A., & Luera, G. R. (2009). Preservice elementary teachers’ growth in knowledge of models in a science capstone course. International Journal of Science and Mathematics Education, 7(6), 1201-1225.
  • Frederiksen, J. R., White, B. Y., & Gutwill, J. (1999). Dynamic mental models in learning science: The importance of constructing derivational linkages among models. Journal of Reserach in Science Teaching, 36(7), 806-836.
  • Genzling, J. -C., & Pierrard, M. -A. (1994). La modélisation, la description, la conceptualisation, l’explication et la prédiction, in Nouveau Regards sur l’enseignement et l’apprentissage de la modélisation en sciences. Paris : INRP.
  • Gilbert, J. K. (1995). The role of models and modelling in some narratives in science learning. Presented at the Annual Meeting of the American Educational Research Association, April 18-22. San Francisco, CA, USA.
  • Gilbert, J. K., Boulter, C. J., & Elmer, R. (2000). Positioning models in science education and in design and technology education. In J. K. Gilbert & C. J. Boulter (Eds.), Developing models in science education (pp. 3–18). Dordrecht: Kluwer Academic Publishers.
  • Gilbert, J. K., Pietrocola, M., & Zylbersztajn, A. (2000). Science and Educationl: Notions of Reality, Theory and Model, In Developing models in science education. Netherlands: Kluwer Academic Publishers.
  • Gobert, J. D. (2000). A typology of causal models for plate tectonics: Inferential power and barriers to understanding. Science Education, 22(9), 937- 977.
  • Grosslight, L., Unger, C., Jay, E., & Smith, C. L. (1991). Understanding models and their use in science: Conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28(9), 799-822.
  • Gümüş, İ., Demir, Y., Koçak, E., Kaya, Y., & Kırıcı, M. (2008). Modelle öğretimin öğrenci başarısına etkisi. Erzincan Eğitim Fakültesi Dergisi, 10(1), 65-90.
  • Günbatar, S. & Sarı, M. (2005). Elektrik ve manyetizma konularında anlaşılması zor kavramlar için model geliştirilmesi. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 25(1), 185-197.
  • Güneş, B., Gülçiçek, Ç., & Bağcı, N. (2004). Eğitim fakültelerindeki fen ve matematik öğretim elemanlarının model ve modelleme hakkındaki görüşlerinin incelenmesi. Türk Fen Eğitimi Dergisi, 1(1), 35-48.
  • Güneş, M. H., & Çelikler, D. (2010). The investigation of effects of modelling and computer assisted instruction on academic achievement. The International Journal of Educational Researchers, 1(1), 20-27.
  • Halbwachs, F. (1974). La pensée physique chez l’enfant et le savant, collection zetos, Neuchâtel : Delechaux et Niestlé.
  • Harrison, A. G., & Treagust, D. F. (1996). Secondary students’ mental models of atoms and molecules: implications for teaching chemistry. Science Education, 80(5), 509-534.
  • Harrison, A. G., & Treagust, D. F. (2000). A typology of school science model. Internetional Journal of Science Education, 22(9), 1011-1026.
  • Hart, K. (2008). Models in physics, model for physics learning, and why the distinction may matter in the case of electric circuits. Research in Science Education, 38, 529-544.
  • Host, V. (1989). Système et modèles: Quelques repères bibliographiques. Aster, 8, 187-209.
  • Johnson. S. K., & Stewart, J. (2002). Revising and assessing explanatory models in a high school genetics class: A comparison of unsuccessful and successful performance. Science Education, 86, 463-480.
  • Justi, R. S., & Gilbert, J. K. (2002a). Science teachers’ knowledge about and attitudes towards the use of models and modelling in learning Science. International Journal of Science Education, 24(12), 1273–1292.
  • Justi, R. S., & Gilbert, J. K. (2002b). Modelling, teachers’ views on the nature of modelling, and implications for the education of modellers. International Journal of Science Education, 24(4), 369-387.
  • Justi, R. S., & Gilbert, J. K. (2003). Teachers' views on the nature of models. International Journal of Science Education, 25(11), 1369-1386.
  • Kuo, M. -T., Jones, L. L., Pulos, S. M., & Hyslop, R. M. (2004). The relationship of molecular representations, complexity, and orientation to the difficulty of stereochemistry problems. The Chemical Educator, 9, 1-7.
  • Larcher, C. (1996). La physique et la chimie, sciences de modèles in Didactique appliquée de la physique – chimie. Paris : Nathan.
  • Lawson, D., & Lawson, A. (1993). Neural principles of memory and a neural theory of analogical insight. Journal of Research in Science Teaching, 30(10), 1327-1348.
  • Lee, C. B., Jonassen, D., & Teo, T. (2011). The role of model building in problem solving and conceptual change. Interactive Learning Environments, 19(3), 247-265.
  • M´arquez, C., Izquierdo, M. `E., & Espinet, M. (2006). Multimodal science teachers’ discourse in modeling the water cycle. Science Education, 90, 202-226.
  • Maia, P. F., & Justi, R. (2009). Learning of chemical equilibrium through modelling-based teaching. International Journal of Science Education, 31(5), 603–630.
  • Martinand, J. -L. (1990). In J. Colomb et J.-L. Martinand : Enseignement et apprentissage de la modélisation, Rapport RCP INRP-LIREST. (p.116) Document multigraphié, Lirest. Paris, Université Paris 7.
  • MEB. (2006). 6-8. Sınıflar fen ve teknoloji öğretim programı. Ankara: MEB. Yayınları.
  • MEB. (2013). 3-8. Sınıflar fen bilimleri dersi öğretim programı. Ankara: MEB Yayınları.
  • Oh, P. S., & Oh, S. J. (2011). What teachers of science need to know about models an overview. International Journal of Science Education, 33(8), 1109-1130.
  • Ourisson, G. (1986). Le langage universel la chimie: les idéogrammes, ambiguïté et laxismes. L’actualité Chimique, 1-2, 41-45.
  • Paton, R. C. (1996). On an apparently simple modelling problem in biology. International Journal of Science Education, 18(1), 55-64.
  • Robardet, G., & Guillaud, J. -C. (1994). Eléments d’épistémologie et de didactique des sciences physiques, de la recherche à la pratique, Tome 1. Publication de l’IUFM de Grenoble.
  • Rotbain, Y., Marbach-Ad, G., & Stavy, R. (2006). Effect of bead and illustrations models on high school students’ achievement in molecular genetics. Journal of Research in Science Teaching, 43(5), 500-529.
  • Sarıkaya, M. (2007). Kolay sağlanabilir malzemelerle molekül model yapımı. Türk Eğitim Bilimleri Dergisi, 5(3), 513-537.
  • Sarıkaya, R., Selvi, M., & Doğan Bora, N. (2004). Mitoz ve mayoz bölünme konularının öğretiminde model kullanımının önemi. Kastamonu Eğitim Dergisi, 12(1), 85-88.
  • Shen, J., & Confrey, J. (2007). From conceptual change to transformative modeling: A case study of an elementary teacher in learning astronomy. Science Education, 91, 948-966.
  • Smit, J. J. A., & Finegold, M. (1995). Models in physics: Perceptions held by final-year prospective physical science teachers studying at South African universities. International Journal of Science Education, 17(5), 621-634.
  • Stratford S. J., Krajcik, J., & Soloway E. (1988). Secondary students' dynamic modeling processes: analyzing, reasoning about, synthesizing, and testing models of stream ecosystems. Journal of Science Education and Technology, 7(3), 215-234.
  • Taylor, I., Barker, M., & Jones, A. (2003). Promoting mental model building in astronomy education. International Journal of Science Education, 25(10), 1205-1225.
  • Thom, R. (1979). Modélisation et scientificité, in acte du colloque Elaboration et Justification des Modèles, Applications en Biologie, Tome 1. Paris: Maloine Editeur.
  • Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2002). Students’ understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357-368.
  • Ünal, G., & Ergin, Ö. (2006). Fen Eğitimi ve Modeller. Milli Eğitim Dergisi, 171, 188-196.
  • Van Driel, J. H., & Verloop, N. (1999). Teachers’ knowledge of models and modelling in Science. International Journal of Science Education, 21(11), 1141- 1153.
  • Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instruction, 4, 45-69.
  • Vosniadou, S., Skopeliti, I., & Ikospentaki, K. (2004). Modes of knowing and ways of reasoning in elementary astronomy. Cognitive Development, 19, 203-222.
  • Walliser, B. (1977). Systèmes et modèles, introduction critique à l’analyse de système. Paris: Seuil.
  • Yiğit, N., & Özmen, H. (2006). Fen öğretimine yönelik hazırlanan modellerin kazandırmayı amaçladıkları davranışlar açısından incelenmesi. Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi, 21, 1-14.
  • Yurdatapan, M., & Şahin, F. (2013). DNA Kavramları ile ilgili animasyon ve model kullanılmasının fen bilgisi öğretmenliği öğrencilerinin öğrenmelerine etkisi. Turkish Studies - International Periodical for the Languages, Literature and History of Turkish or Turkic, 8, 8, 2303-2313.
Turkish Studies (Elektronik)-Cover
  • ISSN: 1308-2140
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2006
  • Yayıncı: Mehmet Dursun Erdem