STEM Education for Disadvantaged Students: Teacher and Student Experiences

STEM education is based on interrelated and holistic teaching of the disciplines of science,technology, engineering and mathematics. It is important to ensure that STEM education doesnot address a certain category of society only but that it is also applied to disadvantagedsegments of society. The aim of the present study is to identify the opinions of socioeconomically disadvantaged students and their teachers about STEM education experience. Thestudy was planned according to the case study model. The participants of the research consistedof a teacher and 34 Grade-8 students studying in a regional boarding school (RBS) in a northernprovince of Turkey. In the study, a unit (Living Beings and Life) within the scope of 8th gradescience course was planned in accordance with STEM education. The data of the study werecollected through student diaries and the field notes taken by the teacher. The data obtainedfrom student diaries were subjected to content analysis, and the field notes were analysed withdescriptive analysis. It was determined that the RBS students evaluated STEM-focusedactivities and the related applications in terms of their contributions to their learning process,21st-century skills, their perceptions about STEM disciplines and the development of theircareer awareness on STEM fields. The results obtained from the teachers’ field notes showedthat the students’ participation and group work skills increased, that the students had fun andbecame motivated in the course, and that they experienced an improvement in their skills ofassociating what they learned with their daily life, solving problems and designing and in theirengineering awareness.

Dezavantajlı Öğrenciler için STEM Eğitimi: Öğretmen ve Öğrenci Deneyimleri

STEM Eğitimi, fen, teknoloji, mühendislik ve matematik disiplinlerinin birbiri ile ilişkili ve bütüncül öğretimini esas almaktadır. STEM eğitiminin toplumun yalnızca belirli bir kesimine hitap etmesinden kaçınılması ve toplumun dezavantajlı kesimlerine de uygulanması önem arz etmektedir. Araştırmanın amacı sosyo-ekonomik olarak dezavantajlı öğrencilerin ve öğretmenlerinin STEM eğitimi deneyimine yönelik görüşlerini ortaya koymaktır. Araştırma durum çalışması modelinde planlanmıştır. Araştırmanın çalışma grubunu Türkiye’nin kuzeyinde bir ilde yatılı bölge okulunda öğrenim görmekte olan 34 sekizinci sınıf öğrencisi ve bir fen bilimleri öğretmeni oluşturmuştur. Araştırmada 8. sınıfı fen bilimleri dersi kapsamında bir ünite (Canlılar ve Hayat) STEM eğitimine uygun olarak planlanmıştır. Araştırmanın verileri öğrencilerin günlükleri ve uygulayıcı tarafından tutulan alan notları ile toplanmıştır. Öğrencilerin günlüklerinden elde edilen verilerin analizi içerik analizi ile, alan notları ise betimsel analiz ile çözümlenmiştir. Yatılı bölge okulu öğrencileri STEM odaklı etkinlikler ile yürütülen uygulamaları; öğrenme sürecine, 21. Yüzyıl becerilerine, STEM disiplinlerine yönelik algılarına ve STEM alanlarında kariyer farkındalığına olumlu etkisi olduğu şeklinde değerlendirmişlerdir. Uygulayıcı ise, uygulamaların öğrencilerin derse katılımını ve grup çalışması becerisinin arttığını, öğrencilerin derste eğlendiklerini ve motive olduklarını, günlük yaşam ile öğrendiklerini ilişkilendirme, problem çözme ve tasarım becerilerinin gelişimini sağladığı ve mühendisliğe yönelik farkındalıklarının gelişim gösterdiği şeklinde değerlendirmiştir.

___

Alsbury, T. L., & Shaw. N. L. 2005. Policy implications for social justice in school district consolidation. Leadership and Policy in Schools, 4, 105–126.

Bannister, V. R. P., Davis, J., Mutegi, J., Thompson, L., & Lewis, D. D. (2017). Returning to the root” of the problem: improvıng the social condition of african americans through mathematics education. Catalyst: A Social Justice Forum, 7(1), 4-14.

Bozkurt Altan, E. (2017a). Fen, teknoloji, mühendislik ve matematik (FeTeMM-STEM) eğitimi [Science, technology, engineering, and mathematics education] Hastürk, H. G. (Ed.), Teoriden pratiğe fen bilimleri öğretimi [Science Education from theory to practice] (pp. 354-388). Turkey, Ankara: Pegem Academy Press.

Bozkurt Altan, E. 2017b. Tasarım temelli fen eğitimi ve probleme dayalı STEM uygulamaları [Design based science education and problem-based STEM education]. In Çepni, S. (Ed.), Kuramdan uygulamaya STEM+A+E Eğitimi [STEM+A+E Education from theory to practice] (pp. 169-199). Turkey, Ankara: Pegem Academy Press.

Bozkurt Altan, E., & Ercan, S. (2016). STEM Education program for science teachers: perceptions and competencies. Journal of Turkish Science Education, 13, 103- 117.

Bozkurt Altan, E., Üçüncüoğlu, İ., & Zileli, E. (2019). Yatılı bölge ortaokulu öğrencilerinin STEM alanlarına yönelik kariyer farkındalığının araştırılması [Investigation of career awareness of STEM fields of the regional boarding secondary schools students]. Kastamonu Education Journal, 27(2), 785-797.

Bybee, R. (2010) Advancing STEM education: a 2020 vision. Technology and Engineering Teacher, 70(1), 30-35.

Çepni, S. (2017). Kuramdan uygulamaya STEM eğitimi [STEM+A+E Education from theory to practice]. Turkey, Ankara: Pegem Academy Press.

Çınar, S., Pırasa, N., & Paliç Sadoğlu, G. 2016. Views of science and mathematics pre- service teachers regarding STEM. Universal Journal of Educational Research, 4(6), 1479- 1487.

Çorlu, M. S. (2017). STEM: Bütünleşik Öğretmenlik Çerçevesi [STEM: Framework of integrated Teacher]. In M. S. Corlu, E. Çallı (Eds.), STEM Kuram ve Uygulamaları [Theory and Practice of STEM] (pp. 1-10). Turkey, Ankara: Pusula Press.

Doppelt, Y., Mehalik, M. M., Schunn, C. D., Silk, E., & Krysinski, D. (2008). Engagement and achievements: a case study of design-based learning in a science context. Journal of Technology Education, 19(2), 22-39.

Dubetz, T., & Wilson J.A. (2013). Girls in engineering, mathematics and science, GEMS: A science outreach program for middle-school female students. Journal of STEM Education, 14(3), 41-47.

Ellefson, M. R., Brinker, R. A., Vernacchio, V. J., & Schunn, C. D. (2008). Design-based learning for biology. Biochemistry and Molecular Biology Education, 36(4), 292-298.

Ellis, A., & Fouts, J. (2001). Interdisciplinary curriculum: The research base: The decision to approach music curriculum from an interdisciplinary perspective should include a consideration of all the possible benefits and drawbacks. Music Educators Journal, 87(22), 22-26,68.

Enslin, P. (2006). Democracy, social justice and education: feminist strategies in a globalising world. Educational Philosophy and Theory, 38(1), 57-67.

Gale, T. (2000). Rethinking social justice in schools: how will we recognize it when we see it? International Journal of Inclusive Education, 4(3), 253-269.

Gewirtz, S. (2006). Towards a contextualized analysis of social justice in education. Educational Philosophy and Theory, 38(1), 70-81.

Gülhan, F., & Şahin, F. (2016). Fen-teknoloji-mühendislik-matematik entegrasyonunun (STEM) 5. Sınıf öğrencilerinin bu alanlarla ilgili algı ve tutumlarına etkisi [The effects of science-technology-engineering-math (STEM) integration on 5th grade students’ perceptions and attitudes towards these areas.]. International Journal of Human Sciences, 13(1), 602-620.

Hacıoğlu, Y., Yamak, H., & Kavak, N. (2016). Mühendislik tasarım temelli fen eğitimi ile ilgili öğretmen görüşleri [Teachers’ Opinions Regarding Engineering Design Based ScienceEducation]. Bartin University Journal of Faculty of Education, 5(3), 807-830.

Hacıoğlu, Y., Yamak, H., & Kavak, N. (2017). The opinions of prospective science teachers regarding STEM education: The engineering design based science education [The opinions of prospective science teachers regarding STEM education: the engineering design-based science education]. Gazi University Journal of Faculty of Education, 37(2), 649-684.

Han, S., Yalvac, B., Capraro, M. M., & Capraro, M.R. (2015). In-service teachers' implementation of and understanding from project-based learning (PBL) in science, technology, engineering, and mathematics (STEM) project-based learning. Eurasia Journal of Mathematics, Science ve Technology Education, 11(1), 63-76.

Karahan, E. (2015). Fantastik bir STEM masalı: robotların yükselişi [A fantastic STEM tale: the rise of robots]. Retrieved from https://enginkarahan.com/2015/02/08/fantastik-birstem-masali-robotlarin-yukselisi/

Karahan, E., & Bozkurt, G. (2017). STEM Eğitiminde matematiksel odaklı gerçek dünya problemleri ve matematiksel modelleme [Mathematical real-world problems and mathematical modeling in STEM Education]. Çepni, S (Ed.), Kuramdan uygulamaya STEM+A+E Eğitimi [STEM+A+E Education from theory to practice] (pp. 353-372). Turkey, Ankara: Pegem Academy Press.

Karcı, M. (2018). STEM etkinliklerine dayalı senaryo tabanlı öğrenme yaklaşımının (stöy) öğrencilerin akademik başarıları, meslek seçimleri ve motivasyonları üzerine etkisinin incelenmesi [Examining the effect of using scenario based teaching method based on STEM activities on students' achievement, career choice and their motivation]. (Unpublished master thesis). Available from Turkish Thesis Center (No. 509021).

Kınık Topalsan, A. (2018). Sınıf öğretmenliği öğretmen adaylarının geliştirdikleri mühendislik tasarım temelli fen öğretim etkinliklerinin değerlendirilmesi [Evaluatıon of The Elementary School Teacher Candıdates’ Engıneerıng Desıgn Based Scıence Instructıon Actıvıtıes]. YYU Journal of Education Faculty, 15(1), 186-219.

Köroğlu, E., & Bozkurt Altan, E. (2017, April). Planning of the 8th class "Living and Energy" unit for STEM education. Paper presented at 26th International Conference on Educational Science, Antalya, Turkey.

Lowrie, T., Downes, N., & Leonard, S. (2018). STEM Education for all young Australians. A Bright spots stem learning hub foundation paper for SVA, in partnership with Samsung. University of Canberra STEM Education Research Centre.

Madden, P. E., Wong, C., Cruz, A. C. V., Olle, C. D., & Barnett, M. (2017). Social justice driven STEM learning (STEMJ): A curricular framework for teaching STEM in a social justice driven, urban, college access program. Catalyst: A Social Justice Forum, 7(1), 24- 37. Ministry of Education (2003). Yatılı İlköğretim Bölge Okulları ve Pansiyonlu İlköğretim Okulları Yönetici Kılavuz Kitabı [Regional directory of boarding primary schools and primary schools with pensions executive guide book], Turkey, İstanbul: Ministry of Education Press.

Ministry of Education (2016). Fen bilimleri dersi öğretim programı [Science Curriculum] Turkey, Ankara: Ministry of Education Press.

Muro, J., & Kottman, T. (1995). Guidance and counseling in the elementary and middle schools. Dubuque, IA: Brown &; Benchmark.

National Academy of Engineering [NAE] & National Research Council [NRC] (2009). Engineering in K-12 education understanding the status and improving the prospects. Edt. Katehi, L., Pearson, G. & Feder, M. Washington, DC: National Academies Press.

National Research Council [NRC]. (2012). A Framework for k-12 science education: practices, crosscutting concepts, and core ideas. Washington DC: The National Academic Press.

Parker, C.E., Pillai, S., & Roschelle, J. (2016). Next generation STEM learning for all: A report from the NSF supported forum. Waltham, MA: Education Development Center.

Peterman, K., Daugherty, J. L., Custer, R. L., & Ross, J. M. (2017). Analysing the integration of engineering in science lessons with the engineering-infused lesson rubric. International Journal of Science Education, 39(14), 1913–1931.

Rogers, C., & Portsmore, M. (2004). Bringing engineering to elementary school. Journal of STEM Education: Innovations & Research, 5(3/4), 17-28.

Sanders, M. (2009). STEM, STEM education, STEMmania. The Technology Teacher. 68(4): 20-26.

Sarı, U. (2018). Disiplinlerarası fen öğretimi: FeTeMM eğitimi [Interdisciplinary science teaching: STEM education]. Karamustafaoğlu, O.; Tezel, Ö.; Sarı, U. (Eds.). Güncel yaklaşım ve yöntemlerle etkinlik destekli fen öğretimi [Activity-supported science teaching with current approaches and methods]. (pp. 286-324). Turkey, Ankara: Pegem Academy Press.

Schnittka, C., & Bell, R. (2011). Engineering design and conceptual change in science: addressing thermal energy and heat transfer in eighth grade. International Journal of Science Education, 33(13), 1861-1887.

Scott, C. (2017). STEM education and social justice. Catalyst: A Social Justice Forum, 7(1), 1- 2. Shaughnessy, M. (2013). Mathematics in a STEM context. Mathematics Teaching in the Middle School, 18(6), 321-323.

Smith, J., & Karr-Kidwell, PJ. (2000). The interdisciplinary curriculum: a literary review and a manual for administrators and teachers. Retrieved from ERIC database. (ED443172).

Sondel, B., Koch, J., Carrier, S., & Walkowiak, T. (2017). Toward a theory of teacher education for justice-oriented STEM. Catalyst, 7(1), 38-52.

Sturman, A. (1997). Social justice in education. Camberwell Victoria: ACER Press. Turkish Language Institution (2018). Current Turkish Dictionary, Retrieved April 25, 2018, from http://www.tdk.gov.tr/index.php?option=com_bts&view=bts&kategori1=veritbn& kelimesec=288671.

Üçüncüoğlu, İ. (2018). Fen bı̇lgı̇sı̇ öğretmen adaylarına yönelı̇k STEM odaklı laboratuvar uygulamalarının tasarlanması ve etkı̇lı̇lı̇ğı̇nı̇n araştırılması [STEM-focused design and efficiency investigation of laboratory applications for pre-service science teachers]. (Unpublished master thesis). Available from Turkish Thesis Center (No. 513968).

Wang, H. H., Moore, T. J., Roehrig, G. H., & Park, M. S. (2011). STEM integration: teacher perceptions and practice. Journal of Pre-College Engineering Education Research, 1(2), 1–13. Wendell, K. B. (2008). The theoretical and empirical basis for design-based science instruction for children. Qualifying Paper, Tufts University.

Wong, V., Dillon, J., & King, H. (2017). STEM and social justıce: mutually incompatible?. European Science Education researchh Association (ESERA) Conference, Dublin City, Dublin, Ireland.

Yin R. K. (2009). Case study research: Design and methods (4th ed.). SAGE Pub. Thousand Oaks, California.