Order Diptera as a model in the studies of insect immunity: a review

Order Diptera as a model in the studies of insect immunity: a review

Order Diptera is the most important group of animals when it comes to insect immunity research. The largest share of experimental data in the group falls on the genus Drosophila - a model species with a number of advantages. Other crucial representatives are those of the mosquito group, as they are vectors of a number of infectious diseases infecting higher vertebrates and humans. As representatives of the genera, Anopheles, Aedes and Culex are very significant model organisms. In total, more than 40 dipteran species are being actively studied as models in various aspects related to immunity. Together with the representatives of the order Lepidoptera, they are the major source of the knowledge gained so far on the defense mechanisms in insects. The current review demonstrates that the studies conducted on dipteran species concern all existing mechanisms of immune defense, namely antimicrobial peptides, signaling pathways, pathogen recognition, the different types of hemocytes, antiviral and other immune responses (phagocytosis, nodulation, melanization and encapsulation).

___

  • Adams M, Celniker S, Holt R, Evans C, Gocayne J et al. (2000). The genome sequence of Drosophila melanogaster. Science 287 (5461): 2185-2195.
  • Adang MJ, Mishra R, Hua G, Bagal UR, Champagne D (2020). Anopheles gambiae (Ag55) cells are phagocytic and have hemocyte-like gene expression. Preprint from Research Square (in press).
  • Ashburner M, Golic K, Hawley R (2005). Parasites, pests, and diseases. In: Ashburner M. (editor). Drosophila, A Laboratory Handbook., New York, USA: Cold Spring Harbor Laboratory Press. 2nd ed: pp. 1285-333.
  • Barillas-Mury C, Charlesworth A, Gross I., Richman, A, Hoffmann JA, Kafatos FC (1996). Immune factor Gambif1, a new relfamily from the human malaria vector, Anopheles gambiae. EMBO Journal 15: 4691-4701.
  • Barillas-Mury C, Han YS, Seeley D, Kafatos FC (1999). Anopheles gambiae Ag-STAT, a new insect member of the STAT family, is activated in response to bacterial infection. EMBO Journal 18: 959-967.
  • Bartholomay LC, Cho WL, Rocheleau TA, Boyle JP, Beck ET et a.(2004). Description of the transcriptomes of immune response-activated hemocytes from the mosquito vectors Aedes aegypti and Armigeres subalbatus. Infection and Immunity 72 (7): 4114-4126.
  • Beck ET, Blair CD, Black WC IV, Beaty BJ, Blitvich BJ (2007). Alternative splicing generates multiple transcripts of the inhibitor of apoptosis protein 1 in Aedes and Culex spp. mosquitoes. Insect Biochemistry and Molecular Biology 37: 1222-1233.
  • Beckage N (2008). Insect Immunology, 1st edition. Riverside, USA: University of California Academic Press.
  • Bian G, Shin SW, Cheon HM, Kokoza V, Raikhel AS (2005). Transgenic alteration of Toll immune pathway in the female mosquito Aedes aegypti. Proceedings of the National Academy of Sciences of the United States of America 102: 13568-13573.
  • Blandin S, Moita LF, Köcher T, Wilm M, Kafatos FC et al.(2002). Reverse genetics in the mosquito Anopheles gambiae: targeted disruption of the Defensin gene. EMBO Reports 3 (9): 852-856.
  • Blitvich BJ, Blair CD, Kempf BJ, Hughes MT, Black WC et al. (2002). Developmental- and tissue-specific expression of an inhibitor of apoptosis protein 1 homologue from Aedes triseriatus mosquitoes. Insect Molecular Biology 11: 431-442.
  • Boulanger N, Lowenberger C, Volf P, Ursic, R, Sigutova L et al. (2004). Characterization of a defensin from the sand fly Phlebotomus duboscqi induced by challenge with bacteria or the protozoan parasite Leishmania major. Infection and Immunity 72 (12): 7140-7146.
  • Carter JB, Green EI (1987). Haemocytes and granular cell fragments of Tipula paludosa larva. Journal of Morphology 191: 289-294.
  • Castillo JC, Robertson AE, Strand MR (2006). Characterization of hemocytes from the mosquitoes Anopheles gambiae and Aedes aegypti. Insect Biochemistry and Molecular Biology 36: 891-903.
  • Chase MR, Raina K, Bruno J, Sugumaran M (2000). Purification, characterization and molecular cloning of prophenoloxidases from Sarcophaga bullata. Insect Biochemistry and Molecular Biology 30: 953-967.
  • Christophides GK, Vlachou D, Kafatos FC (2004). Comparative and functional genomics of the innate immune system in the malaria vector Anopheles gambiae. Immunological Reviews 198: 127-148.
  • Crowley LD, Houck MA (2002). The immune response of larvae and pupae of Calliphora vicina (Diptera: Calliphoridae), upon administered insult with Escherichia coli. Journal of Medical Entomology 39 (6): 931-934.
  • Da Silva Gonçalves D, Iturbe-Ormaetxe I, Martins-da-Silva A, Loza Telleria E, Neves Rocha M et al. (2019). Wolbachia introduction into Lutzomyia longipalpis (Diptera: Psychodidae) cell lines and its effects on immune-related gene expression and interaction with Leishmania infantum. Parasites Vectors 12:33.
  • De Gregorio E, Spellman PT, Tzou P, Rubin GM, Lemaitre B (2002). The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO Journal, 21 (11): 2568- 2579.
  • Dimarcq JL, Keppi E, Lambert J, Zachary D, Hoffmann D (1986). Diptericin A, a novel antibacterial peptide induced by immunization or injury in larvae of the dipteran insect Phormia terranovae. Developmental and Comparative Immunology 10: 626.
  • Dimarcq JL, Keppi E, Dunbar B, Lambert J, Reichhart JM et al. (1988). Purification and characterization of a family of novel inducible antibacterial proteins from immunized larvae of the dipteran Phormia terranovae and complete amino acid sequence of the predominant member, Diptericin A. European Journal of Biochemistry 171: 17-22.
  • Dimarcq JL, Zachary D, Hoffmann JA, Hoffmann D, Reichhart JM (1990). Insect immunity: Expression of the two major inducible antibacterial peptides, defensin and diptericin in Phormia terranovae. EMBO Journal 9: 2507-2515.
  • Dimopoulos G, Richman A, Muller HM, Kafatos FC (1997). Molecular immune responses of the mosquito Anopheles gambiae to bacteria and malaria parasites. Proceedings of the National Academy of Sciences of the United States of America 94: 11508- 11513.
  • Domnas A, Giebel PE, McInnis T (1974). Biochemistry of mosquito infection: Preliminary studies of biochemical change in Culex pipiens quinquefasciatus following infection with Lagenidium giganteum. Journal of Invertebrate Pathology 24: 293-304.
  • Dong S, Fu X, Dong Y, Simões ML, Zhu J, Dimopoulos G (2020). Broad spectrum immunomodulatory effects of Anopheles gambiae microRNAs and their use for transgenic suppression of Plasmodium. PLoS Pathogens 16: (4):e1008453.
  • Dong Y, Dimopoulos G (2009). Anopheles fibrinogen-related proteins provide expanded pattern recognition capacity against bacteria and malaria parasites. Journal of Biological Chemistry 284: 9835-9844.
  • Dostert C, Jouanguy E, Irving P, Troxler L, Galiana-Arnoux D et al. (2005). The JAK-STAT signaling pathway is required but not sufficient for the antiviral response of Drosophila. Nature Immunology 6: 946-953.
  • Drif L, Brehélin M (1983). The circulating hemocytes of Culex pipiens and Aedes aegypti: Cytology histochemistry, hemograms and functions. Developmental and Comparative Immunology 7 (4): 687-690.
  • Drolet B, Campbell C, Stuart M, Wilson W (2005). Vector competence of Culicoides sonorensis (Diptera: Ceratopogonidae) for vesicular stomatitis virus. Journal of Medical Entomology 42 (3): 409-418.
  • Foley DA (1978). Innate cellular defense by mosquito hemocytes. In: Bulla Jr LA, Cheng TC (editors). Comparative Pathobiology. New York, NY, USA: Academic Press: Franc, N.C. pp. 114-143.
  • Forton KF, Christensen BM, Sutherland DR (1985). Ultrastructure of the melanization response of Aedes trivittatus against inoculated Dirofilaria immitis microfilariae. Journal of Parasitology 71 (3): 331-341.
  • Franchini A, Miyan JA, Ottaviani E (1996). Induction of ACTHand TNF-alpha-like molecules in the hemocytes of Calliphora vomitoria (Insecta, Diptera). Tissue Cell 28: 587-592.
  • Franssens V, Simonet G, Bronckaers A, Claeys I, De Loof, A et al. (2005). Eicosanoids mediate the laminarin induced nodulation response in larvae of the flesh fly, Neobellieria bullata. Archives of Insect Biochemistry and Physiology 59: 32-41.
  • Fu X, Dimopoulos G, Zhu J (2017). Association of microRNAs with Argonaute proteins in the malaria mosquito Anopheles gambiae after blood ingestion. Scientific Reports 7: 1.
  • Galiana-Arnoux D, Dostert C, Schneemann A, Hoffmann JA, Imler JL (2006). Essential function in vivo for Dicer-2 in host defense against RNA viruses in Drosophila. Nature Immunology 7: 590-597.
  • Girard YA, Popov V, Wen J, Han V, Higgs S (2005). Ultrastructural study of West Nile virus pathogenesis in Culex pipiens quinquefasciatus (Diptera: Culicidae). Journal of Medical Entomology 42: 429-444.
  • Girard YA, Schneider BS, McGee CE, Wen J, Han VC et al. (2007). Salivary gland morphology and virus transmission during long-term cytopathologic West Nile virus infection in Culex mosquitoes. American Journal of Tropical Medicine and Hygiene 76: 118-128.
  • Gottar M, Gobert V, Matskevich A, Reichhart J, Wang C et al. (2006). Dual detection of fungal infections in Drosophila by recognition of glucans and sensing of virulence factors. Cell 127: 1425-1437.
  • Götz, P. (1986). Mechanisms of encapsulation in dipteran hosts. Symposia of the Zoological Society of London 56: 1-19.
  • Götz P, Enderlein G, Roettgen I (1987). Immune reactions of Chironomus larvae (Insecta: Diptera) against bacteria. Journal of Insect Physiology 33 (12): 993-1004.
  • Götz P, Vey A (1974). Humoral encapsulation in Diptera (Insecta): Defense reactions of Chironomus larvae against fungi. Parasitology 68: 193-205.
  • Habayeb M, Ekengren S, Hultmark D (2006). Nora virus, a persistent virus in Drosophila, defines a new picorna-like virus family. Journal of General Virology 87: 3045-51
  • Ham PJ, Albuquerque C, Baxter AJ, Chalk R, Hagen HE (1994). Humoral immune responses in blackfly and mosquito vectors of filariae. Transactions of the Royal Society of Tropical Medicine and Hygiene 88 (2): 132-135.
  • Hanson MA, Dostálová A, Ceroni C, Poidevin M, Kondo S et al. (2019). Synergy and remarkable specificity of antimicrobial peptides in vivo using a systematic knockout approach. eLife, 8, e44341.
  • Hanson MA, Lemaitre B (2020). New insights on Drosophila antimicrobial peptide function in host defense and beyond. Current Opinion of Immunology. 62: 22-30.
  • Hao Z, Kasumba I, Aksoy S (2003). Proventriculus (cardia) plays a crucial role in immunity in tsetse fly (Diptera: Glossinidiae). Insect Biochemistry and Molecular Biology 33: 1155-1164.
  • Heerman M, Weng JL, Hurwitz I, Durvasula R, Ramalho-Ortigao M (2015). Bacterial infection and immune responses in Lutzomyia longipalpis sand fly larvae midgut. PLoS Neglected Tropical Diseases 9 (7): e0003923
  • Hillyer JF, Christensen BM (2002). Characterization of hemocytes from the yellow fever mosquito, Aedes aegypti. Histochemistry and Cell Biology 117: 431-440.
  • Hoffmann JA (2003). The immune response of Drosophila. Nature 26 (6962): 33-8. doi: 10.1038/nature02021.
  • Hoffmann JA, Hoffmann D (1990). The inducible antibacterial peptides of dipteran insects. Research in Immunology 141 (8): 910-918.
  • Kaaya GP, Ratcliffe NA (1982). Comparative study of hemocytes and associated cells of some medically important dipterans. Journal of Morphology 173; 351-365.
  • Kaaya GP, Flyg C, Boman HG (1987). Insect immunity: Induction of cecropin and attacin-like antibacterial factors in the haemolymph of Glossina morsitans morsitans. Insect Biochemistry 17: 309-315.
  • Kaaya GP, Ratcliffe NA Alemu P (1986). Cellular and humoral defenses of Glossina (Diptera: Glossinidae): Reactions against bacteria, trypanosomes, and experimental implants. Journal of Medical Entomology 23: 30-43.
  • Kacsoh BZ, Bozler J, Schlenke TA (2014). A role for nematocytes in the cellular immune response of the drosophilid Zaprionus indianus. Parasitology, 141(5): 697-715.
  • Kanai A, Natori S (1989). Cloning of gene cluster for Sarcotoxin I, antibacterial proteins of Sarcophaga peregina. Federation of European Biochemical Societies Letters 258: 199-202
  • Keppi E, Pugsley AP, Lambert J, Wicker C, Dimarcq JL et al. (1989). Mode of action of diptericin A, a bactericidal peptide induced in the hemolymph of Phormia terranovae larvae. Archives of Insect Biochemistry and Physiology, 10: 229-239.
  • Keppi E, Zachary D, Robertson M, Hoffmann D, Hoffmann JA (1986). Induced antibacterial proteins in the haemolymph of Phormia terranovae (Diptera): Purification and possible origin of one protein. Insect Biochemistry 16: 395-402.
  • Kim YS, Ryu JH, Han SJ, Choi KH, Nam KB et al. (2000). Gramnegative bacteria binding protein, a pattern recognition receptor for lipopolysaccharide and β-1,3-glucan that mediates the signaling for the induction of innate immune genes in Drosophila melanogaster cells. Journal of Biological Chemistry 275: 32721-32772.
  • Kind TV (2008). Differentiation of the stable hyaline cells in response to foreign particles injections into the larvae of blowfly Calliphora vomitoria. Tsitologiia 50 (9):765-772 (in Russian).
  • Kind TV (2010). Effect of immunization on the in vivo immunocytes reaction to foreign particles in the larvae of the flesh fly Calliphora vomitoria. Tsitologiia 52 (6): 442-450.
  • Kind TV (2012). Functional morphology of blowfly Calliphora vicina hemocytes. Tsitologiia 54 (11): 806-822.
  • Komano H, Mizuno D, Natori S (1980). Purification of lectin induced in the hemolymph of Sarcophagi peregrina larvae on injury. Journal of Biological Chemistry 255: 2919-2924.
  • Lambert J, Keppi E, Dimarcq JL, Wicker C, Reichhart JM et al. (1989). Insect immunity: isolation from immune blood of the dipteran Phormia terranovae of two insect antibacterial peptides with sequence homology to rabbit lung macrophage bactericidal peptides. Proceedings of the National Academy of Sciences of the United States of America 86 (1): 262-266.
  • Lauth X, Nesin A, Briand JP, Roussel JP, Hetrua C (1998). Isolation, characterization and chemical synthesis of a new insect defensin from Chironomus plumosus (Diptera). Insect Biochemistry and Molecular Biology 28 (12): 1059-1066.
  • Lavine MD, Strand MR (2002). Insect hemocytes and their role in immunity. Insect Biochemistry and Molecular Biology 32: 1295-1309.
  • Lemaitre B, Hoffmann J (2007). The host defense of Drosophila melanogaster. Annual Review of Immunology 25: 697‐743.
  • Levashina E, Ohresser S, Lemaitre B, Imler J (1998). Two distinct pathways can control expression of the Drosophila antimicrobial peptide metchnikowin. Journal of Molecular Biology 278: 515-527.
  • Levashina EA, Moita LF, Blandin S, Vriend G, Lagueux M et al. (2001). Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell 104: 709-718.
  • Li Q, Li H, Blitvich BJ, Zhang J (2007). The Aedes albopictus inhibitor of apoptosis 1 gene protects vertebrate cells from bluetongue virus-induced apoptosis. Insect Molecular Biology 16: 93-105.
  • Liu CT, Hou RF, Chen CC (1998). Formation of basement membranelike structure terminates the cellular encapsulation of microfilariae in the haemocoel of Anopheles quadrimaculatus. Parasitology 116: 511-518.
  • Lowenberger C (2001). Innate immune response of Aedes aegypti. Insect Biochemistry and Molecular Biology 31: 219-229.
  • Luckhart S, Crampton AL, Zamora R, Lieber M J, Dos Santos PC et al. (2003). Mammalian transforming growth factor beta1 activated after ingestion by Anopheles stephensi modulates mosquito immunity. Infection and Immunity 71: 3000-3009.
  • Luckhart S, Vodovotz Y, Cui L, Rosenberg R (1998). The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide. Proceedings of the National Academy of Sciences of the United States of America 95: 5700- 5705.
  • Ludwig GV, Christensen BM, Yuill TM, Schultz KT (1989). Enzyme processing of La Crosse virus glycoprotein G1: A bunyavirus– vector infection model. Virology 171: 108-113.
  • Ludwig GV, Israel BA, Christensen BM, Yuill TM, Schultz KT (1991). Role of La Crosse virus glycoproteins in attachment of virus to host cells. Virology 181: 564-571.
  • Matsuyama K, Natori S (1988). Molecular cloning of cDNA for sapecin and unique expression of the sapecin gene during the development of Sarcophaga peregrina. Journal of Biological Chemistry 236: 17117-17121.
  • Moita LF, Wang-Sattler R, Michel K, Zimmermann T, Blandin S et al. (2005). In vivo identification of novel regulators and conserved pathways of phagocytosis in Anopheles gambiae. Immunity 23: 65-73.
  • Mura ME, Ruiu L (2018). Sex-specific sub-lethal effects and immune response in Ceratitis capitata Wied. (Diptera: Tephritidae) challenged with spinosad. Insects 9 (3): 73.
  • Murphy K, Weaver C (2016). Janeway’s Immunobiology. Garland Science, p. 904.
  • Mussabekova A, Daeffler L, Imler JL (2017). Innate and intrinsic antiviral immunity in Drosophila. Cellular and Molecular Life Sciences 74: (11) 2039-2054.
  • Myllymäki H, Valanne S, Rämet M (2014). The Drosophila imd signaling pathway. Journal of Immunology 192 (8): 3455-62.
  • Nappi AJ (1975). Cellular immune reactions of larvae of Drosophila Algonquin. Parasitology 70 (2):189-94
  • Nayduch D, Lee MB Saski CA (2014). Gene discovery and differential expression analysis of humoral immune response elements in female Culicoides sonorensis (Diptera: Ceratopogonidae). Parasites Vectors 7: 388.
  • Neyen C, Bretscher AJ, Binggeli O, Lemaitre B (2014). Methods to study Drosophila immunity. Methods 68: 116-128.
  • Okada M, Natori S (1983). Purification and characterization of an antibacterial protein from haemolymph of Sarcophaga peregrina (fleshfly) larvae. Journal of Biochemistry 211: 727-734.
  • Osta MA, Christophides GK, Kafatos FC (2004). Effects of mosquito genes on Plasmodium development. Science 303: 2030-2032.
  • Pal R, Kumar K (2014). A comparative study of haemocytes in three cyclorrhaphous dipteran flies. International Journal of Tropical Insect Science 34 (3): 207-216.
  • Park SI, Chang BS, Yoe SM (2014). Detection of antimicrobial substances from larvae of the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae). Entomological Research 44: 58-64.
  • Parthier C, Stelter M, Ursel C, Fandrich U, Lilie H et al. (2014). Structure of the Toll-Spatzle complex, a molecular hub in Drosophila development and innate immunity. Proceedings of the National Academy of Sciences of the United States of America 111(17): 6281-6286.
  • Pau RN, Kelly C (1975). The hydroxylation of tyrosine by an enzyme from third-instar larvae of the blowfly Calliphora erythrocephala. Biochemical Journal 147: 565-573.
  • Poinar GO, Leutenegger R (1971). Ultrastructural investigation of the melanization process in Culex pipiens (Culicidae) in response to a nematode. Journal of Ultrastructure Research 36: 149-158.
  • Postlethwait JH, Saul SH, Postlethwait JA (1998). The antibacterial immune response of the medfly, Ceratitis capitata. Journal of Insect Physiology 34 (2): 91-96.
  • Ramirez JL, Muturi EJ, Barletta ABF, Rooney AP (2019). The Aedes aegypti IMD pathway is a critical component of the mosquito antifungal immune response. Developmental and Comparative Immunology 95: 1-9.
  • Riehle MM, Markianos K, Niare O, Xu JN, Li J et al. (2006). Natural malaria infection in Anopheles gambiae is regulated by a single genomic control region. Science 312: 577-579.
  • Rosales C (2017). Cellular and molecular mechanisms of insect immunity. In: Shields VDC (editor). Insect physiology and ecology, London: Intech Open. . doi: 10.5772/67619
  • Rosetto M, Belardinelli M, Fausto AM, Bongiorno G, Maroli M et al. (2003a). Antimicrobial activities in the haemolymph of Phlebotomus papatasi (Diptera, Psychodidae). Italian Journal of Zoology 70 (3): 221-224.
  • Rosetto M, Marchini D, de Filippis T, Ciolfi S, Frati F et al. (2003b). The ceratotoxin gene family in the medfly Ceratitis capitata and the Natal fruit fly Ceratitis rosa (Diptera: Tephritidae). Heredity 90 (5): 382-389.
  • Royet J, Reichhart J-M, Hoffmann JA (2005). Sensing and signaling during infection in Drosophila. Current Opinion in Immunology 17 (1): 11-17.
  • Salminen TS, Vale PF (2020). Drosophila as a model system to investigate the effects of mitochondrial variation on innate immunity. Frontiers in Immunology, 11: 521.
  • Shiao SH, Higgs S, Adelman Z, Christensen BM, Liu SH et al. (2001). Effect of prophenoloxidase expression knockout on the melanization of microfilariae in the mosquito Armigeres subalbatus. Insect Molecular Biology 10: 315-321.
  • Somboon P, Prapanthadara L, Suwonkerd W (1999). Selection of Anopheles dirus for refractoriness and susceptibility to Plasmodium yoelii nigeriensis. Medical and Veterinary Entomology 13: 355-361.
  • Steiner H (2004). Peptidoglycan recognition proteins: on and off switches for innate immunity. Immunological Reviews 198, 83- 96.
  • Timothy B, Sackton B, Lazzaro P, Clark AG (2017). Rapid expansion of immune-related gene families in the house fly, Musca domestica. Molecular Biology and Evolution 34 (4): 857-872.
  • Tsukamoto T, Ichimaru Y, Kanegae N, Watanabe K, Yamaura I et al. (1992). Identification and isolation of endogenous insect phenoloxidase inhibitors. Biochemical and Biophysical Research Communications 184: 86-92.
  • Van Rij R, Saleh M, Berry B, Foo C, Houk A et al. (2006). The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster. Genes and Development 20: 2985-95.
  • Wang XH, Aliyari R, Li WX, Li HW, Kim K et al. (2006). RNA interference directs innate immunity against viruses in adult Drosophila. Science 312: 452-54.
  • Wang XG, Fuchs JF, Infanger LC, Rocheleau TA, Hillyer JF et al. (2005). Mosquito innate immunity: Involvement of beta 1,3-glucan recognition protein in melanotic encapsulation immune responses in Armigeres subalbatus. Molecular and Biochemical Parasitology 139: 65-73.
  • Wang X, Rocheleau TA, Fuchs JF, Hillyer JF, Chen CC et al. (2004). A novel lectin with a fibrinogen-like domain and its potential involvement in the innate immune response of Armigeres subalbatus against bacteria. Insect Molecular Biology 13: 273- 282.
  • Wang Y-H, Chang M-M, Wang X-L, Zheng A-H, Zou Z (2018) The immune strategies of mosquito Aedes aegypti against microbial infection Developmental and Comparative Immunology 83: 12-21.
  • Waterhouse RM, Kriventseva EV, Meister S, Xi Z, Alvarez KS et al. (2007). Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes. Science 316: 1738- 1743.
  • Whitten MM, Shiao SH, Levashina EA (2006). Mosquito midguts and malaria: Cell biology, compartmentalization and immunology. Parasite Immunology 28: 121-130.
  • Williams M (2007). Drosophila hemopoiesis and cellular immunity. The Journal of Immunology 178: 4711-4716.
  • Xie JJ, Chen QX, Wang Q, Song KK, Qiu L (2007). Activation kinetics of cetylpyridinium chloride on the prophenol oxidase from pupae of blowfly (Sarcophaga bullata). Pesticide Biochemistry and Physiology 87: 9-13.
  • Yakovlev AY (2011). Induction of antimicrobial peptide synthesis by the fat body cells of maggots of Calliphora vicina R.-D. (Diptera, Calliphoridae). Journal of Evolutionary Biochemistry and Physiology 47: 543-551.
  • Yamamoto-Hino M, Goto S (2016). Spätzle-processing enzymeindependent activation of the toll pathway in Drosophila innate immunity. Cell Structure and Function 41(1): 55-60.
  • Zachary D, Brehelin M, Hoffmann JA (1973). The haemocytes of Calliphora erythrocephala. Zeitschrift fur Zellforschung und mikroskopische Anatomie 141: 55-73.
  • Zachary D, Brehelin M, Hoffmann JA (1975). Role of the “thrombocytoids” in capsule formation in the Dipteran Calliphora erythrocephala. Cell and Tissue Research 162: 343-348.
  • Zakovic S, Levashina, EA (2017). NF-κB-Like Signaling Pathway REL2 in Immune Defenses of the Malaria Vector Anopheles gambiae. Frontiers in Cellular and Infection Microbiology 7:258. doi: 10.3389/fcimb.2017.00258.
  • Zhang R, Zhu Y, Pang X, Xiao X, Zhang R et al. (2017). Regulation of antimicrobial peptides in Aedes aegypti Aag2 cells. Frontiers in Cellular and Infection Microbiology 7: 22.
  • Zhao F, Stanley D, Wang Y, Zhu F, Lei CL (2009). Eicosanoids mediate nodulation reactions to a mollicute bacterium in larvae of the blowfly, Chrysomya megacephala. Journal of Insect Physiology 55:192-196.
  • Zhao X, Ferdig MT, Li J, Christensen BM (1995). Biochemical pathway of melanotic encapsulation of Brugia malayi in the mosquito, Armigeres subalbatus. Developmental and Comparative Immunology 19: 205-215.
  • Zheng H, Yang X, Xi Y (2016). Fat body remodeling and homeostasis control in Drosophila. Life sciences 167: 22-31.
Turkish Journal of Zoology-Cover
  • ISSN: 1300-0179
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK