Insecticidal effect of diatomaceous earth and dolomite powder against Corn weevil Sitophilus zeamais Motschulsky, 1855 (Coleoptera: Curculionidae)

Insecticidal effect of diatomaceous earth and dolomite powder against Corn weevil Sitophilus zeamais Motschulsky, 1855 (Coleoptera: Curculionidae)

Sitophilus zeamais Motschulsky, 1855 (Coleoptera: Curculionidae) which develops inside the grain, is an aggressive pest of stored grains. Here, we evaluated the efficiency of diatomaceous earth (DE), Diatomita CI/325 CX, and dolomite (DOL), Dolomita Dr. Kanyo, against S. zeamais reared on corn under laboratory conditions and observed external alterations on treated insects using scanning electron microscopy (SEM). Insects treated with both DE and DOL were impregnated with particles on the body surface, and they showed 100% mortality after 10 days of exposure. Damages caused by inert dusts may have contributed to dehydration and desiccation, consequently, leading insects to death. Thus, diatomaceous and dolomite were effective against S. zeamais under laboratory conditions.

___

  • Abbott WS (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18: 265-267. doi: 10.1093/jee/18.2.265a
  • Ashraf M, Wakil W, Hafeez F, Farooq M (2016). Persistence and insecticidal efficacy of a diatomaceous earth formulation, InertPMS, in stored wheat grain against Cryptolestes ferrugineus (Stephens), Liposcelis paeta Pearman, Rhyzopertha dominica (F.) and Tribolium castaneum (Herbst). Turkish Journal of Entomology, 40 (2): 107-115. doi: 10.16970/ted.72128
  • Bavaresco A (2007). Avaliação de tratamentos alternativos para o controle do Acanthoscelides obtectus (Say)(Coleoptera: Bruchidae). Revista de Ciências Agroveterinárias, 6 (2): 125- 133.
  • Dal Bello GM, Fusé CB, Pedrini N, Padín SB (2018). Insecticidal efficacy of Beauveria bassiana, diatomaceous earth and fenitrothion against Rhyzopertha dominica and Tribolium castaneum on stored wheat. International Journal of Pest Management 64 (3) 279-286. doi: 10.1080/09670874.2017.1397300
  • Delgarm N, Ziaee M, McLaughlin A (2020). Enhanced-Efficacy Iranian Diatomaceous Earth for Controlling Two StoredProduct Insect Pests. Journal of Economic Entomology 113 (1): 504-510. doi: 10.1093/jee/toz261
  • Deutsch CA, Tewksbury JJ, Tigchelaar M, Battisti DS, Merrill SC, et al. (2018). Increase in crop losses to insect pests in a warming climate. Science 361 (6405): 916-919. doi: 10.1126/science. aat3466
  • Dowell FE, Dowell CN (2017). Reducing grain storage losses in developing countries. Quality Assurance and Safety of Crops & Foods 9 (1): 93-100. doi: 10.3920/QAS2016.0897
  • Fleurat-Lessard F (2017). Integrated management of the risks of stored grain spoilage by seedborne fungi and contamination by storage mould mycotoxins: An update. Journal of Stored Product Research 71: 22-40. DOI: 10.1016/j.jspr.2016.10.002
  • Frederick JL, Subramanyam B (2016). Influence of temperature and application rate on efficacy of a diatomaceous earth formulation against Tribolium castaneum adults. Journal of Stored Product Research,69: 86-90. doi: 10.1016/j.jspr.2016.06.009
  • Golob P (1997). Current status and future perspectives for inert dust for control of stored product insects. Journal of Stored Products Research 33: 69-81. doi: 10.1016/S0022-474X (96)00031-8
  • Howard RW, Blomquist GJ (2005). Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annual Reviews of Entomology 50: 371-93. doi: 10.1146/annurev. ento.50.071803.130359
  • Jackson K, Webley D (1994). Effects of Dryacide on the physical properties of grains, pulses and oilseeds. Proceedings of the 6th International Conference on Stored-Product Protection, Canberra, Australia. pp. 635-637.
  • Jairoce CF, Teixeira CM, Nunes AM, Holdefer DR, Krüger AP, et al. (2016). Efficiency of inert mineral dusts in the control of corn weevil. Revista Brasileira de Engenharia Agrícola e Ambiental 20 (2): 158-162. doi: 10.1590/1807-1929/agriambi. v20n2p158-162
  • Julio AHF, Gigliolli AAS, Cardoso KAK, Drosdoski SD, Kulza RA, et al. (2017). Multiple resistance to pirimiphos-methyl and bifenthrin in Tribolium castaneum involves the activity of lipases, esterases, and laccase2. Comparative Biochemistry and Physiology part C Toxicology and Pharmacology 195: 27-43. doi: 10.1016/j.cbpc.2017.01.011
  • Kavallieratos NG, Athanassiou CG., Peteinatos GG, Boukouvala MC, Benelli G (2018). Insecticidal effect and impact of fitness of three diatomaceous earths on different maize hybrids for the eco-friendly control of the invasive stored-product pest Prostephanus truncatus (Horn). Environmental Science and Pollution Research, 25: 10407-10417. doi: 10.1007/s11356- 017-9565-5
  • Kenis M, Hurley BP, Colombari F, Lawson S, Sun J, et al. (2019). Guide to the classical biological control of insect pests in planted and natural forests, FAO Forestry Paper No. 182. Rome, FAO. License: CC BY-NC-SA 3.0 IGO.
  • Korunić Z (2013). Diatomaceous earths – Natural Insecticides. Pesticides & Phytomedicine (Belgrade) 28 (2): 77 95. doi: 10.2298/PIF1302077K
  • Maggioni K, Silva LB, Xavier ZF, Munhae CB, Dourados LRB, et al. (2016). Performance of populations of Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae) on different varieties of maize. African Journal of Agricultural Research 11 (10): 873-881. doi: 10.5897/AJAR2015.10505
  • Malia HAE, Rosi-Denadai CA, Guedes NMP, Martins GF, Guedes RNC (2016). Diatomaceous earth impairment of water balance in the maize weevil, Sitophilus zeamais. Journal of Pest Science 89: 945-954. doi: 10.1007/s10340-016-0732-0
  • Prasantha BDR, Reichmuth CH, Adler C, Felgentreu D (2015). Lipid adsorption of diatomaceous earths and increased water permeability in the epicuticle layer of the cowpea weevil Callosobruchus maculatus (F.) and the bean weevil Acanthoscelides obtectus (Say) (Chrysomelidae). Journal of Stored Product Research 64: 36-41. doi: 10.1016/j. jspr.2015.08.003
  • Ribeiro LP, Lovato M, Vendramim JD (2018). Avaliação da eficácia de duas formulações comerciais de terra de diatomácea no controle do gorgulho-do-milho com base em parâmetros toxicológicos. Agropecuária Catarinense 31 (1), 56-60. doi: 10.22491/RAC.2018.v31n1.7
  • Ribeiro LPR, Vendramim JD (2019). Associação de extratos vegetais e terra de diatomácea no controle do gorgulho-domilho Sitophilus zeamais Mots. (Coleoptera: Curculionidae). Revista Brasileira de Agropecuária Sustentável 9 (1): 9-16. doi: 10.21206/rbas.v9i1.7966
  • Rose RI (2001). Pesticides and public health: integrated methods of mosquito management. Emerging Infectious Diseases 7 (1): 17- 23. doi: 10.3201/eid0701.010103
  • Saeed N, Farooq M, Shakeel M, Ashraf M (2018). Effectiveness of an improved form of insecticide-based diatomaceous earth against four stored grain pests on different grain commodities. Environmental Science and Pollution Research 25: 17012-17024. doi: 10.1007/s11356-018-1835-3
  • Sauffi AS, Ibrahim WMW, Ahmad R, Mortar NAM, Zaidi FA, et al. (2020) A Review of Morphology Analysis on Dolomite as an Additive Material in Geopolymer. IOP Conference Series: Materials Science and Engineering 743: 012024. doi: 10.1088/1757-899X/743/1/012024
  • Subramanyam B, Roesli R (2000). Inert dusts. In: Subramanyam B., Hagstrum D. W. (editors). Alternatives to pesticides in storedproduct IPM. Norwell: Kluwer Academic Publishers. pp.321-380.
  • Tsai WT, Lai CW, Hsien KJ (2006). Characterization and adsorption properties of diatomaceous earth modified by hydrofluoric acid etching. Journal of Colloid Interface Science 297: 749-754. doi: 10.1016/j.jcis.2005.10.058
  • USDA, Office of Global Analysis, FAS. World Agricultural Production. May, 2019.
  • Ziaee M, Atapour M, Marouf A (2016) Insecticidal Efficacy of Iranian Diatomaceous Earths on Adults of Oryzaephilus surinamensis. Journal of Agricultural Science and Technology 18: 361-370.