Evolutionary analyses of phylum Chaetognatha based on mitochondrial cytochrome oxidase I gene

Evolutionary analyses of phylum Chaetognatha based on mitochondrial cytochrome oxidase I gene

Chaetognaths (arrow worms) are an enigmatic group of transparent planktonic invertebrates and play an important role in the marine food web. Their morphological and developmental features have raised extensive debates since the discovery of the phylum in the 18th century. Uncertainty in the phylogenetic placement of certain chaetognath species still exists and is puzzling many scientists who have tried to clarify this task. Studies using a portion of both small subunit ribosomal ribonucleic acid (SSU rRNA) and large subunit ribosomal ribonucleic acid (LSU rRNA) genes when integrated with conventional taxonomy were contributed to resolve taxonomical issues in this group. Here we present the first phylogenetic study of Chaetognatha based on a portion of mitochondrial cytochrome oxidase I (COI) gene and compare our results with the earlier morphological and molecular evolutionary hypotheses. This study includes 16 extant species, representing 8 genera and 6 of which are among the 9 extant families. We recommend the following clade structure for the phylum: Aphragmophora comprising Sagittidae with Pterosagittidae and Krohnittidae included in the Sagittidae and Phragmophora comprising Eukrohniidae, Spadellidae, and Heterokrohniidae. Phylogenetic analyses also supported the division of Phragmophora into two monophyletic groups: the Monophragmophora and Biphragmophora. Moreover, Ctenodontina/Flabellodontina and Syngonata/Chorismogonata suborders were not validated. Precise phylogenetic investigations using various molecular markers and specimens from diverse regions are definitely needed to provide an exact evolutionary concept on this phylum.

___

  • Abdelaziz AR, Khalafalla RE, Hassan AAA, Elmahallawy EK, Almuzaini AM (2019). Molecular phylogenetic analysis of Cysticercus ovis from Egypt based on MT-CO1 gene sequences. Revista Brasileira de Parasitologia Veterinária 28 (2): 258-265. doi: 10.1590/S1984-29612019028
  • Bieri R (1991a). Six new genera in the chaetognath family Sagittidae. Gulf and Caribbean Research 8 (3): 221-225.
  • Bieri R (1991b). Systematics of the Chaetognatha. In: Bone Q, Kapp H, Pierrot-Bults AC (editors). The Biology of Chaetognaths.1st ed. Oxford, United Kingdom: Oxford University Press, pp.122-136.
  • Bucklin A, Ortman BD, Jennings RM, Nigro L, Sweetman CJ et al. (2010). A ‘‘Rosetta Stone’’ for zooplankton: DNA barcode analysis of holozooplankton diversity of the Sargasso Sea (NW Atlantic Ocean). Deep Sea Research Part II: Topical Studies in Oceanography 57 (24-26): 2234-2247. doi: 10.1016/j. dsr2.2010.09.025
  • Casanova JP (1985). Description de l’appareil génital primitif du genre Heterokrohnia et nouvelle classification des Chaetognathes. Comptes rendus de l’Académie des Sciences-Série III-Sciences de la Vie 301 (8): 397-402 (in French).
  • Casanova JP (1996). A new genus and species of deep-benthic chaetognath from the Atlantic: a probable link between the families Heterokrohniidae and Spadellidae. Journal of Natural History 30 (8): 1239-1245. doi: 10.1080/00222939600770671
  • De Mandal S, Chhakchhuak L, Gurusubramanian G, Kumar NS (2014). Mitochondrial markers for identification and phylogenetic studies in insects–A Review. DNA Barcodes 2 (1): 1-9. doi: 10.2478/dna-2014-0001
  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3 (5): 294-299.
  • Gasmi S, Nve G, Pech N, Tekaya S, Gilles A et al. (2014). Evolutionary history of Chaetognatha inferred from molecular and morphological data: A case study for body plan simplification. Frontiers in zoology 11 (1): 84. doi: 10.1186/s12983-014-0084-7
  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W et al. (2010). New algorithms and methods to estimate maximumlikelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59 (3): 307-321. doi: 10.1093/sysbio/syq010
  • Hall BG (2013). Building phylogenetic trees from molecular data with MEGA. Molecular biology and evolution 30 (5): 1229-1235. doi: 10.1093/molbev/mst012
  • Hall TA (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95-98.
  • Harzsch S, Müller CH, Rieger V, Perez Y, Sintoni S et al. (2009). Fine structure of the ventral nerve centre and interspecific identification of individual neurons in the enigmatic Chaetognatha. Zoomorphology 128: 53-73. doi: 10.1007/s00435- 008-0074-4
  • Hillis DM, Bull JJ (1993). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42:182-192. doi:10.1093/sysbio/42.2.182
  • Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS (2018). UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35 (2): 518-522. doi: 10.1093/ molbev/msx281
  • Huang Z, Ruan R (2018). DNA barcodes and insights into the phylogenetic relationships of Corvidae (Aves: Passeriformes). Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis 9 (4): 529-534.doi: 10.1080/24701394.2017.1315569
  • Hyman LH (1959). The enterocoelous coelomates-phylum Chaetognatha. In: The Invertebrates. Vol. 5, Smaller Coelomate Groups. 1st ed. New York, United States: McGraw-Hill, pp. 1-71.
  • Jennings RM, Bucklin A, Pierrot-Bults AC (2010). Barcoding of arrow worms (Phylum Chaetognatha) from three oceans: genetic diversity and evolution within an enigmatic phylum. PLoS One 5 (4): e9949. doi: 10.1371/journal.pone.0009949
  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution 35 (6): 1547-1549. doi: 10.1093/molbev/msy096
  • Miller SA, Dykes DD, Polesky HF (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research 16 (3): 1215. doi: 10.1093/nar/16.3.1215
  • Minh BQ, Nguyen MAT, von Haeseler A (2013). Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30 (5): 1188-1195. doi: 10.1093/molbev/mst024
  • Miyamoto H, Kotori M, Itoh, H, Nishida S (2014). Species diversity of pelagic chaetognaths in the Indo-Pacific region. Journal of Plankton Research 36 (3): 816-830. doi: 10.1093/plankt/fbu001
  • Nair VR (1972). Chaetognaths of the Arabian Sea. PhD, Cochin University of Science and Technology, Kerala, India.
  • Nair VR, Kidangan FX, Prabhu RG, Bucklin A, Nair S (2015a).DNA barcode of Chaetognatha from Indian Waters. Indian Journal of Geo-Marine Sciences 44 (9):1366-1376.
  • Nair VR, Kusum KK, Gireesh R, Nair M (2015b). The distribution of the chaetognath population and its interaction with environmental characteristics in the Bay of Bengal and the Arabian Sea.Marine Biology Research 11:269-282.doi:10.1080/ 17451000.2014.914224
  • Nair VR, Rao TSS (1973a). Chaetognaths from the Laccadives with the new record of Spadella angulata (Tokioka, 1951). In: Zeitzschel B (editor). The biology of the Indian Ocean. 1st ed. New York, USA: Springer Verlag, pp.319-327.
  • Nair VR, Rao TSS (1973b). Chaetognaths of the Arabian Sea. In: Zeitzschel B (editor). The biology of the Indian Ocean. 1st ed. New York, USA: Springer Verlag, pp. 293-317.
  • Nielsen C (2001). Animal Evolution: Interrelationships of the living phyla. 2nd ed. New York, United States: Oxford University Press.
  • Nylander J (2008). MrModeltest2 v. 2.3 (Program for selecting DNA substitution models using PAUP*). Evolutionary Biology Centre, Uppsala, Sweden.
  • Pamilo, P, Nei, M (1988). Relationships between gene trees and species trees. Molecular biology and evolution, 5(5): 568-583.
  • Papillon D, Perez Y, Caubit X, Le Parco Y (2006). Systematics of Chaetognatha under the light of molecular data, using duplicated ribosomal 18S DNA sequences. Molecular Phylogenetics and Evolution 38: 621-634. doi: 10.1016/j. ympev.2005.12.004
  • Perez Y, Müller CHG, Harzsch S (2014). The Chaetognatha: An anarchistic taxon between Protostomia and Deuterostomia. In: Wägele JW, Bartholomaeus TW, Misof B (editors). Deep metazoan phylogeny: The backbone of the tree of life: New insights from analyses of molecules, morphology, and theory of data analysis. 1st ed. Berlin, Germany: Walter de Gruyter, pp. 49-77.
  • Peter S, Manoj Kumar B, Agnes F, Pillai D (2016). Molecular Characterization and Phylogenetic Analysis of Diphyes dispar (Siphonophora: Diphyidae) from the Laccadive Sea, off the south-west coast of Arabian Sea, Indian Ocean. International Journal of Fisheries and Aquatic Studies 4 (6): 30-35.
  • Ptaszyńska AA, Łętowski J, Gnat S, Małek W, Heckel DG (2012). Application of COI sequences in studies of phylogenetic relationships among 40 Apionidae species. Journal of Insect Science 12: 1-14. doi: 10.1673/031.012.1601
  • Raupach MJ, Hannig K, Morinière J, Hendrich L (2019). About Notiophilus Duméril, 1806 (Coleoptera, Carabidae): Species delineation and phylogeny using DNA barcodes. Deutsche Entomologische Zeitschrift 66 (1): 63-73. doi: 10.3897/ dez.66.34711
  • Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A et al. (2012). MRBAYES 3.2: Efficient Bayesian phylogenetic inference and model selection across a large model space. Systematic Biology 61 (3): 539-542. doi: 10.1093/sysbio/sys029
  • Salvini-Plawen LV (1986). Systematics notes on Spadella and on the Chaetognatha in general. Journal of Zoological Systematics and Evolutionary Research 24: 122-128. doi: 10.1111/j.1439- 0469.1986.tb00620.x
  • Shimodaira H, Hasegawa M (1999). Multiple comparisons of loglikelihoods with applications to phylogenetic inference. Molecular Biology and Evolution 16 (8): 1114. doi: 10.1093/ oxfordjournals.molbev.a026201
  • Srinivasan M (1972a). Biology of Chaetognaths of the estuarine waters of India. Journal of the Marine Biological Association of India. 13: 173-181.
  • Srinivasan M (1972b). Two new records of meso and bathyplanktonic Chaetognatha from the Indian Seas. Journal of the Marine Biological Association of India 13: 130-133.
  • Telford, MJ, Holland PWH (1997). Evolution of 28S ribosomal DNA in chaetognaths, duplicate genes and molecular phylogeny. Journal of Molecular Evolution 44: 135-144. doi: 10.1007/ pl00006130
  • Todd CD, Laverack MS (editors) (1991). Coastal Marine Zooplankton. A practical manual for students. 1st ed. Cambridge, UK: Cambridge University Press.
  • Tokioka T (1965a). The taxonomical outline of chaetognaths. Publications of the Seto Marine Biological Laboratory 12: 335- 357.
  • Tokioka T (1965b). Supplementary notes on the systematics of Chaetognatha. Publications of the Seto Marine Biological Laboratory 13: 231-242.
  • Towers LN (2011). The mystery of the Chaetognatha: a molecular phylogenetic approach using pelagic chaetognath species on Pelican Island, Galveston, Texas. PhD, Texas A&M University, Texas, United States.
  • Von Ritter-Zahony R (1911). Revision der Chaetognathen. In: von Drygalski E. Deutsche Südpolar-Expedition, 1901-1903, im Auftrage des Reichsamtes des Innern. 1st ed. Berlin, Germany: G. Reimer, pp. 1-71 (in German)