Adding to the Reproductive Biology of the Parthenogenetic Oribatid Mite, Archegozetes longisetosus (Acari, Oribatida, Trhypochthoniidae)

The oribatid mite, Archegozetes longisetosus, serves as a chelicerate model organism due to its relatively short life cycle and ease of laboratory culturing. It is a parthenogenetic species and all cultures recently used in different laboratories are descendants of a single female collected in 1993. While aspects of its developmental and functional biology have been published, knowledge of its reproductive rate and reproductive system is meager, and data on its life history are contradictory. Herein, we present the gross morphology of the reproductive system as obtained by SEM techniques and X-ray synchrotron microtomography, a new tool for studying mite anatomy. We investigated its reproductive rate by isolating 48 females from cultures and observing reproduction and development at 23 °C. Females repeatedly laid eggs in clutches containing 2-30 eggs. Within 51 days, each female produced, on average, 55 offspring with a maximum of 147. The reproductive rate averaged 1.3 eggs/day.

Adding to the Reproductive Biology of the Parthenogenetic Oribatid Mite, Archegozetes longisetosus (Acari, Oribatida, Trhypochthoniidae)

The oribatid mite, Archegozetes longisetosus, serves as a chelicerate model organism due to its relatively short life cycle and ease of laboratory culturing. It is a parthenogenetic species and all cultures recently used in different laboratories are descendants of a single female collected in 1993. While aspects of its developmental and functional biology have been published, knowledge of its reproductive rate and reproductive system is meager, and data on its life history are contradictory. Herein, we present the gross morphology of the reproductive system as obtained by SEM techniques and X-ray synchrotron microtomography, a new tool for studying mite anatomy. We investigated its reproductive rate by isolating 48 females from cultures and observing reproduction and development at 23 °C. Females repeatedly laid eggs in clutches containing 2-30 eggs. Within 51 days, each female produced, on average, 55 offspring with a maximum of 147. The reproductive rate averaged 1.3 eggs/day.

___

  • Alberti, G. and Coons, L.B. 1999. 8C: Acari: Mites. In: Microscopic Anatomy of Invertebrates. (eds. Harrison, F.W. and Foelix, R.F.), Wiley-Liss Inc., New York, pp. 515-1215.
  • Alberti, G., Seniczak, A. and Seniczak, S. 2003. The digestive system and fat body of an early-derivative oribatid mite, Archegozetes longisetosusAoki (Acari: Oribatida, Trhypochthoniidae). Acarologia 43: 151-222.
  • Alberti, G., Seniczak, A., Michalik, P. and Seniczak, S. 2004. Feinstrukturelle Aspekte des Gnathosomas von Archegozetes longisetosusAoki, 1965 (Oribatida: Trhypochthoniidae). Abhandlungen und Berichte des Naturkundemus. Görlitz 76: 5- 15.
  • Estrada-Venegas, E., Norton, R.A., Equihua-Martinez, A., Romero Napoles, J., Trinidad Santos, J. and Gonzalez Hernandez, H. 1999. Biologia y nueva sinonimia de Archegozetes longisetosus Aoki (Acari-Oribatida) de La Mancha, Veracruz, Mexico. Folia Entomolica Mexico 107: 41-50.
  • Evans, G.O. 1992. Principles of Acarology. CAB International, Wallingford, UK
  • Grandjean, F. 1956. Caracteres chitineux de l’ovipositeur, en structure normale chez les Oribates (Acariens). Archives de zoologie experimentale et generale, Paris 93: 96-106.
  • Grandjean, F. 1962. Les Oribates de Jean Frederic Hermann at de son pere (Arachn. Aca.). Annales de la Société Entomologique de France 105: 27-110.
  • Haq, M.A. 1978. Breeding Biology of Oribatid Mites. Soil Biology and Ecology of India 22: 145-151.
  • Haq, M.A. and Adolph, C. 1981. A comparative study of the duration of the life cycles of four species of oribatid mites (Acari: Oribatei) from the soils of Kerala. Indian Journal of Acarology 5: 56-61.
  • Haq, M.A. 1982. Pheromonal regulation of aggregation and moulting in Archegozetes longisetosus (Acari, Oribatei). Calicut University Research Journal, Special Conference Number May: 19.
  • Heethoff, M., Maraun, M. and Scheu, S. 2000. Genetic variability in ribosomal ITS 1-sequences of the parthenogenetic oribatid mite Platynothrus peltifer (C.L. KOCH, 1839) (Acari: Oribatida). Berichte des naturwissenschaftlich-medizinischen Vereins Innsbruck 87: 339-354.
  • Heethoff, M., Domes, K., Laumann, M., Maraun, M., Norton, R.A. and Scheu, S. 2007. High genetic divergences indicate ancient separation of parthenogenetic lineages of the oribatid mite Platynothrus peltifer (Acari, Oribatida). Journal of Evolutionary Biology 20: 392-402.
  • Heethoff, M., Bergmann, P. and Norton, R.A. 2006. Karyology and sex determination of oribatid mites. Acarologia 46: 127-131.
  • Honciuc, V. 1996. Laboratory studies of the behaviour and life cycle of Archegozetes longisetosus Aoki 1965 (Oribatida). In: Acarology IX. Proceedings Vol. 1. (eds. Mitchell, R., Horn, D.J., Needham, G.R., Welbourn, W.C.), Ohio Biological Survey, Columbus, Ohio, pp. 637-640.
  • Köhler, H.R., Alberti, G., Seniczak, S. and Seniczak, A. 2005. Lead- induced hsp70 and hsp60 pattern transformation and leg malformation during postembryonic development in the oribatid mite, Archegozetes longisetosus Aoki. Comparative Biochemistry and Physiology C 141: 398-405.
  • Lange, A.P. 1960. Prelarva of mites of the order Acariformes and its pecularities in Palaeacarida (Palaeacariformes). Zoologichesky Zhurnal 39: 1819-1824.
  • Lange, A.P. and Tolstikov, A.V. 1999. Ovovivipary, prelarva and the pecularities of eclosion in freshwater oribatid mites Trhypochthoniellus setosus (Will.) and Hydrozetes lemnae (Goggi). Acarina 7: 13-21.
  • Maraun, M. and Scheu, S. 2000. The structure of oribatid mite communities (Acari, Oribatida): patterns, mechanisms and implications for future research. Ecography 23: 374-383.
  • Maraun, M., Heethoff, M., Schneider, K., Scheu, S., Weigmann, G., Cianciolo, J., Thomas, R.H. and Norton, R.A. 2003. Molecular phylogeny of oribatid mites (Acari: Oribatida): evidence for multiple radiations of parthenogentic lineages. Experimental and Applied Acarology 33: 183-201.
  • Michael, A.D. 1884. British Oribatidae, Vol. 1, Ray Society, London.
  • Norton, R.A., Kethley, J.B., Johnston, D.E. and O’Connor, B.M. 1993. Phylogenetic perspectives on genetic systems and reproductive modes of mites. In: Evolution and Diversity of Sex Ratio (eds. Wrensch, D.L. and Ebbert, M.A.), Chapman and Hall, New York, pp. 8-99
  • Norton, R.A. 1994. Evolutionary aspects of oribatid mite life histories and consequences for the origin of the Astigmata. In: Mites: Ecological and Evolutionary Studies of Life-History Patterns (ed. Houck, M.A.), Chapman and Hall, New York, pp. 99-135.
  • Otto, J. 1997. Observations on prelarvae in Anystidae and Tenerifiidae. In: Acarology IX. Proceedings Vol. 1. (eds. Mitchell, R., Horn, D.J., Needham, G.R., Welbourn, W.C.), Ohio Biological Survey, Columbus, Ohio, pp. 343-354.
  • Palmer, S.C. and Norton, R.A. 1990. Further experimental proof of thelytokous parthenogenesis in oribatid mites (Acari: Oribatida: Desmonomata). Experimental and Applied Acarology 8: 149-159.
  • Palmer, S.C. and Norton, R.A. 1991. Taxonomic, geographic and seasonal distribution of thelytokous parthenogenesis in the Desmonomata (Acari: Oribatida). Experimental and Applied Acarology 12: 67-81.
  • Palmer, S.C. and Norton, R.A. 1992. Genetic diversity in thelytokous oribatid mites (Acari; Acariformes: Desmonomata). Biochemical Systematics and Ecology 20: 219-231.
  • Sakata, T. and Norton, R.A. 2003. Opisthonotal gland chemistry of a middle-derivative oribatid mite, Archegozetes longisetosus (Acari: Trhypochthoniidae). International Journal of Acarology 29: 345- 350.
  • Schatz, H. 2002. Die Oribatidenliteratur und die beschriebenen Oribatidenarten (1758-2001) – Eine Analyse. Abhandlungen und Berichte des Naturkundemuseums Görlitz 72: 37-45.
  • Seniczak, A., Seniczak, S. and Dlugos, J. 1997. The influence of copper on the development, fertility and mortality of Archegozetes longisetosus Aoki (Acari, Oribatida) in the laboratory conditions. Mengen und Spuren-Elemente, Arbeitstagung 1997: 620-626.
  • Senizcak, A., Senizcak, S. and Dlugos, J. 1998. The influence of lead on the development, fertility and mortality of Archegozetes longisetosus Aoki (Acari, Oribatida) in laboratory conditions. 2nd Int. Conf. Trace Elements – Effects on organisms and environment. Cieszyn, Poland, pp. 187-191.
  • Senizcak, A. 1998. Preliminary studies on the influence of food on the development and morphology of Archegozetes longisetosus Aoki (Acari, Oribatida) in laboratory conditions. Academia Technizno- Rolnicza im. Jana I Jederzeja Sniadeckich w Bydgozczy. Zeszyty Naukowe 214: 175-180.
  • Seniczak, A., Senizcak, S. and Dlugos, J. 1999. The effect of lead and copper on Archegozetes longisetosus Aoki (Acari, Oribatida) in laboratory conditions. 5thCentral European workshop on soil zoology, Ceske, Budejovice, pp. 289-293.
  • Seniczak, A. and Seniczak, S. 2002. The effect of cadmium on Archegozetes longisetosus (Acari, Oribatida) in laboratory conditions. European Journal of Soil Biology 38: 315-317.
  • Smrz, J. and Norton, R.A. 2004. Food selection and internal processing in Archegozetes longisetosus (Acari: Oribatida). Pedobiologia 48: 111-120.
  • Taberly, G. 1987. Recherches sur la parthéogenèse thélytoque de deux espèces d’acariens oribatides : Trypochthonius tectorum (Berlese) et Platynothrus peltifer (Koch). III. Etude anatomique, histologique et cytologique des femelles parthénogenétiques. Acarologia 28: 389-403.
  • Telford, M.J. and Thomas, R.H. 1998a. Expression of homebox genes shows chelicerate arthropods retain their deutocerebral segment. Proceedings of the National Academy of Science, USA 95: 10671- 10675.
  • Telford, M.J. and Thomas, R.H. 1998b. Of mites and zen: expression studies in a chelicerate arthropod confirm zen is a divergent Hox gene. Development Genes and Evolution 208: 591-594.
  • Thomas, R.H. and Telford, M.J. 1999. Appendage development in embryos of the oribatid mite Archegozetes longisetosus (Acari, Oribatei, Trhypochthoniidae). Acta Zoologica, Stockholm 80: 193-200.
  • Wallwork, J.A. 1977. The structure of the ovipositor and the mechanisms of oviposition in the oribatid mite Machadobelba symmetrica Bal. (Acari : Cryptostigmata). Acarologia 19: 149- 154.
  • Walter, D.E. and Proctor, H.C. 1999. Mites. Ecology, Evolution and Behaviour. CAB International, Oxon, UK.
  • Walzl, G.W., Gutweniger, A. and Wernsdorf, P. 2004. Embryology of mites: new techniques yield new findings. Phytophaga XIV: 163- 181.
  • Witalinski, W. 1987. Topographical relations between oocytes and other ovarian cells in three mite species (Acari). Acarologia 28: 299- 306.
Turkish Journal of Zoology-Cover
  • ISSN: 1300-0179
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK