The effect of acute fluoride poisoning on nitric oxide and methemoglobin fordmation in the guinea pig

Araştırmada, akut flor zehirlenmesinin nitrik oksit ve methemoglobin oluşumu üzerine etkisinin belirlenmesi amacıyla, 250 mg/kg dozunda sodyum florür yalnız ve flor varlığında verapamil uygulandı ve kontrol grubuna göre kan nitrik oksit (Griess reaksiyonu), kalsiyum düzeyleri ve hemoglobin, methemoglobin, hematokrit değerleri ile alyuvar sayıları belirlendi. Florun uygulanması sonrasında kan nitrik oksit ve methemoglobin düzeyindeki yükselme ile rölatif ilişkili olarak kalsiyum, hemoglobin, hematokrit ve alyuvar değerlerinde azalma belirlendi. Akut flor zehirlenmesinde florun iyonafor etkisi ile kan nitrik oksit düzeyinde şekillenen yükselmenin kalsiyum miktarındaki düşüşle ilişkili olmasından dolayı cNOS kaynaklı olabileceği kanısına varılmıştır.

Kobaylarda akut flor zehirlenmesinin nitrik oksit ve methemoglobin oluşumu üzerine etkisi

To study the effect of acute fluoride poisoning on nitric oxide and methemoglobin formation, 250 mg/kg bw sodium fluoride was applied alone and verapamil was applied together with fluoride. Blood nitric oxide (Griess reaction) and calcium levels; hemoglobin, methemoglobin and hematocrit values; and erythrocyte counts were determined and compared with those of the controls. After the fluoride application it was found that there was a relative relationship between the increase in nitric oxide and methemoglobin levels and the decrease in calcium, hemoglobin and hematocrit levels and erythrocyte count. It was concluded that the increase seen in blood nitric oxide levels as a result of the ionophore effect of fluoride could come from cNOS, as that increase is related to the decrease in calcium amount.

___

  • 1. Abdul, R., Abukurah, M.D., Moser, A.M., Baird, C.L, Randall, R.E., Setter, J.G., Blanke, R.V.: Acute sodium fluoride poisoning. J. Am. Med. Assoc, 1972; 222: 816-817. 2. Cummings, C.C., Mclvor, M.E.: Fluoride-induced hyperkalemia: The role of Ca2+-dependent K+ channels. Fluoride. 1989; 22: 46-47.
  • 3. Hong, X.J., Francker, A, Diamant, B.: Effects of N-acetylocysteine on histamine release by sodium fluoride and compound 48/80 from isolated rat mast cells. Int. Arch. Allergy Appl. Immunol. 1991 ;,96: 338-343. 4. Mayhan, W.G.: Role of nitric oxide in histamine-induced increases in permeability of the blood-brain barrier. Brain Res. 1996; 743: 70-76. 5. Sumina, E.N., Shugaev,,V.A., Shugaev, VX: The mechanism of circulatory hypoxia in acute" poisoning with sodium fluoride. Farmakol. Toksikol. 1978; 41: 480-482.
  • 6. Förstermann, U, Schmidt, A.H.W., Pollock! J.S., Sheng, H, Mitchell, J.A., Warner, T.D., Nakane, M, Murad, F.: Isoforms of nitric oxide synthase characterization and purification from different cell types. Bioc. Pharm. 1991; 42: 1849-1857.
  • 7. Rodeberg, D.A., Chaet, M.S., Bass, R.C., Arkovitz, S.M., Garcia, V.F.: Nitric oxide: An overview. Am. J. Surg. 1995; 170: 292-303.
  • 8. Moshage, H.: Nitric oxide determinations: Much ado abouts N0- thing? Clin. Chem. 1997; 43: 553-556.
  • 9. Radomski, M.W., Palmer, R.M.J., Moncada, S.: Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells. Proc. Natl. Acad. Sci. 1990; 87: 10043-10047.
  • 10. Rzeuski, R., Chlubek, D., Machoy, Z.: Interactions between fluoride and biological free radical reactions. Fluoride. 1998; 31: 43-45.
  • 11. Champion, H.C., Kadowitz, P.J.: R-(-)-alpha-methyl-histamine has nitric oxide-mediated vasodilator activity in the mesenteric vascular bed of the cat. Eur. J. Pharmacol. 1998; 343: 209-216.
  • 12. Simonin, P., Pierron, A.: Accessory factors in fluorosis by ingestion of calcium fluoride in the guinea-pig. Comp. Rend. Soc. Biol. 1997; 124: 669-675.
  • 13. Gilchrist, D.P.D., Darlington, C.K., Smith, P.F.: Effects of flunarizine on ocular motor and postural compensation following peripheral vestibular deafferentation in the guinea pig. Pharmacol. Biochem. Behav. 1993; 44: 99-105.
  • 14. Darlington, C.L., Smith, P.F.: Pretreatment with a Ca2+ channel antagonist facilitates ventricular compensation. Neuroreport. 1992; 3: 143-145.
  • 15. Tunçtan, B., Uludağ, O., Altuğ, S., Abacıoğlu, N.: Effects of nitric oxide synthase inhibition in lipopolysaccharide-induced sepsis in mice. Pharm. Res. 1998; 38: 405-411.
  • 16. Feldman, B.F., Zinkl, J.G., Jain, N.C.: Schalm's Veterinary Hematology. 5th ed. Lippincott Williams & Wilkins. Philadelphia,2000.
  • 17. Schalm, O.W., Jain, N.C., Carroll, E.J.: Veterinary Hematology. 3rd ed. Lea & Febiger, Philadelphia, 1975. 18. Merck, E.: Clinical Laboratory Merck. 11th Edition of Medico-Chemical Investigation Methods. Germany, 1974.
  • 19. Harrison, J.H., Jollow, D.J.: Role of aniline metabolities in aniline-induced hemolytic anemia. J. Pharmacol. Exper. Ther. 1986; 238: 1045-1054.
  • 20 Mendenhall, W.S.: Introduction to Probability and Statistics, 3rd Ed. Wadsworth Publishing Co İne, Belmont, CA: 1971.
  • 21. Mannaioni, P.F., Bello, M.G., Di Bello, M.G., Schunack, W, Masini, j E.: Histamine up-regulates the generation of nitric oxide, and nitric oxide down-regulates the release of histamine in cardiovascular preparations. Inflamm. Res. 1997; Suppl 1: 97-98.
  • 22. Mannaioni, P.F.', Bello, M.G., Di Bello, M.G., Mirabella, C, Gai, P., Schunack, W., Masini, E.: Interaction between histamine and nitric oxide in rat mast cells and in isolated guinea pig hearts. Int. Arch. Allergy Immunol. 1997; 113:.297-299.
  • 23. Akerman, S.: The effect of anti-migraine compounds on nitric oxide-induced dilation of dural meningeal vessels. Eur. J. Pharmacol. 2002; 452: 223-228.
  • 24. Berger, P.J., Skuza, E.M., Brodecky, V., Wilkinson, M.H.: Physiology (communication arising): The ventilatory response to hypoxia. Nature. 2002; 419: 686.
  • 25. Marcuard, S.P., Albernaz, L., Khazanie, P.G.: Omeprazole therapy causes malabsorption of cyanocobalamin (vitamin B-12). Ann. Intern. Med. 1994; 120: 211-215.
  • 26. Anstey, N.M., Granger, D.L., Hassanali, M.Y., Mwaikambo, E.D., Duffy, P.E., Weinberg, J.B.: Nitric oxide, malaria, and anemia: inverse relationship between nitric oxide production and hemoglobin concentration in asymptomatic, malaria-exposed children. Am. J. Trop. Med. Hyg. 1999; 61: 249-252.
  • 27. Raikhlin-Eisenkraft, B., Nutenko, I., Kniznik, D., Merzel, J., Lev, A.: Death from fluoro-silicate in floor polish. Harefuah 1994; 126: 258-259, 303.
  • 28. Augenstein, W.L., Spoerke, D.G., Kulig, K.W., Hall, A.H., Hall, P.K., Riggs, B.S., El Saadi, M., Rumack, B.H.: Fluoride ingestion in children: a review of 87 cases. Pediatrics 1991; 88: 907-912.
  • 29. Chandel, N.S., Vander Heiden, M.G., Thompson, C.B., Schumacker, P.T.: Redox regulation of p53 during hypoxia. Oncogene. 2000; 19: 3840-3848.
  • 30. Murphy, M.E., Sies, H.: Reversible conversion of nitroxyl anion to nitric oxide by superoxide dismutase. Proc. Natl. Acad. Sci. 1991; 88: 10860-10864.
  • 31. Fahey, J.M., Isaacson, R.L.: Pretreatment effects on nitrite- induced methemoglobinemia: saline and calcium channel antagonist. Pharmacol. Biochem. Behav. 1990; 37: 457-459.