In vitro exposure to di-(2-ethylhexyl) phthalate (DEHP) stimulates spontaneous feline uterine contractions

In vitro exposure to di-(2-ethylhexyl) phthalate (DEHP) stimulates spontaneous feline uterine contractions

Di-(2-ethylhexyl) phthalate (DEHP) is widely used as a plasticizer in various products such as PVC-derived plastics, toys, packaging materials, cosmetics, and pharmaceuticals. This study aimed to investigate the effect of DEHP on spontaneous contractions of the feline uterus in vitro. Tubal 1-cm uterine samples prepared from 10, 9, and 12 uteri obtained from adult cats in estrus (n = 5), diestrus (n = 5), and interestrus (n = 5), respectively, after ovariohysterectomy were suspended in an isolated organ bath in aerated Krebs solution at 39 ± 1 °C, and an initial 1 g tension was given. After 1 h equilibration of tissues, the spontaneous contractions were recorded for 10 min as control. The effects of solvent and DEHP (0.001–100 µM) on contractions were then evaluated in terms of frequency and mean amplitude parameters. It was observed that DEHP had no effect on uterine contractions of cats in interestrus. However, DEHP significantly increased the mean amplitude of uterine contractions during the estrus and diestrus periods at concentrations of 1 µM and 10 µM, respectively, depending on the dose (P < 0.05). Decreases in the frequency of the contractions in the estrus and diestrus periods were not statistically significant (P > 0.05). This study, carried out for the first time in cats, showed that DEHP has a stimulatory effect on uterine contractions. We concluded that disruption of the uterine contractions, which are essential for physiological reproductive processes such as regular estrous cycles, sperm and zygote transport, implantation and continuation of pregnancy, by DEHP exposure may cause many reproductive problems.

___

  • 1. Kavlock R, Boekelheide K, Chapin R, Cunningham M, Faustman E et al. NTP center for the evaluation of risks to human reproduction: phthalates expert panel report on the reproductive and developmental toxicity of di (2-ethylhexyl) phthalate. Reproductive Toxicology 2002; 16 (5): 529. doi: 10.1016/s0890-6238(02)00032-1
  • 2. Lorz PM, Towae FK, Enke W, Jäckh R, Bhargava N et al. Phthalic acid and derivatives. In: Wiley VCH (editor). Ullmann’s Encyclopedia of Industrial Chemistry. 27. 7th ed. Hoboken, NJ, USA: Wiley Online Library; 2007. pp. 132-180.
  • 3. Halden RU. Plastics and health risks. Annual Review of Public Health 2010; 31: 179-194. doi: 10.1146/annurev. publhealth.012809.103714
  • 4. Wooten KJ, Smith PN. Canine toys and training devices as sources of exposure to phthalates and bisphenol A: quantitation of chemicals in leachate and in vitro screening for endocrine activity. Chemosphere 2013; 93 (10): 2245-2253. doi: 10.1016/j. chemosphere.2013.07.075
  • 5. Naidenko O, Sutton R, Houlihan J. Pulloted pets: high levels of toxic industrial chemicals contaminate cats and dogs. Washington, DC, USA: Environmental Working Group; 2008.
  • 6. Braouezec C, Enriquez B, Blanchard M, Chevreuil M, Teil MJ. Cat serum contamination by phthalates, PCBs, and PBDEs versus food and indoor air. Environmental Science and Pollution Research International 2016; 23 (10): 9574-9584. doi: 10.1007/s11356-016-6063-0
  • 7. Karthikraj R, Lee S, Kannan K. Urinary concentrations and distribution profiles of 21 phthalate metabolites in pet cats and dogs. Science of the Total Environment 2019; 690: 70-75. doi: 10.1016/j.scitotenv.2019.06.522
  • 8. Erkekoglu P, Zeybek ND, Giray BK, Rachidi W, Kızılgün M et al. The effects of di (2‐ethylhexyl) phthalate on rat liver in relation to selenium status. International Journal of Clinical and Experimental Pathology 2014; 95 (1): 64-77. doi: 10.1111/ iep.12059
  • 9. Tseng IL, Yang YF, Yu CW, Li WH, Liao VHC. Phthalates induce neurotoxicity affecting locomotor and thermotactic behaviors and AFD neurons through oxidative stress in caenorhabditis elegans. PLoS One 2013; 8 (12): e82657. doi: 10.1371/journal. pone.0082657
  • 10. Mariana M, Feiteiro J, Cairrao E. Cardiovascular response of rat aorta to di-(2-ethylhexyl) phthalate (DEHP) exposure. Cardiovascular Toxicology 2018; 18 (4): 356-364. doi: 10.1007/ s12012-017-9439-6
  • 11. Kabakci R, Yigit AA. Effects of bisphenol A, diethylhexyl phthalate, and pentabrominated diphenyl ether 99 on steroid synthesis in cultured bovine luteal cells. Reproduction in Domestic Animals 2020: 55 (6): 683-690. doi: 10.1111/rda.13665
  • 12. Richardson KA, Hannon PR, Johnson-Walker YJ, Myint MS, Flaws JA et al. Di (2-ethylhexyl) phthalate (DEHP) alters proliferation and uterine gland numbers in the uteri of adult exposed mice. Reproductive Toxicology 2018; 77: 70-79. doi: 10.1016/j.reprotox.2018.01.006
  • 13. Lee KI, Chiang CW, Lin HC, Zhao JF, Li CT et al. Maternal exposure to di-(2-ethylhexyl) phthalate exposure deregulates blood pressure, adiposity, cholesterol metabolism and social interaction in mouse offspring. Archives of Toxicology 2016; 90 (5): 1211-1224. doi: 10.1007/s00204-015-1539-0
  • 14. Posnack NG, Lee NH, Brown R, Sarvazyan N. Gene expression profiling of DEHP-treated cardiomyocytes reveals potential causes of phthalate arrhythmogenicity. Toxicology 2011; 279 (1-3): 54-64. doi: 10.1016/j.tox.2010.09.007
  • 15. Huang Y, Li J, Garcia JM, Lin H, Wang Y et al. Phthalate levels in cord blood are associated with preterm delivery and fetal growth parameters in Chinese women. PLoS One 2014; 9 (2): e87430. doi: 10.1371/journal.pone.0087430
  • 16. Li R, Yu C, Gao R, Liu X, Lu J et al. Effects of DEHP on endometrial receptivity and embryo implantation in pregnant mice. Journal of Hazardous Materials 2012; 241: 231-240. doi: 10.1016/j.jhazmat.2012.09.038
  • 17. Mardon H, Bagchi M, Bagchi I, Peng C, Karpovich N et al. Hormonal and paracrine regulation of embryonic implantation: a workshop report. Placenta 2007; 28: S82.
  • 18. Aguilar HN, Mitchell B. Physiological pathways and molecular mechanisms regulating uterine contractility. Human Reproduction Update 2010; 16 (6): 725-744. doi: 10.1093/ humupd/dmq016
  • 19. Gupta RK, Singh JM, Leslie TC, Meachum S, Flaws JA et al. Di- (2-ethylhexyl) phthalate and mono-(2-ethylhexyl) phthalate inhibit growth and reduce estradiol levels of antral follicles in vitro. Toxicology and Applied Pharmacology 2010; 242 (2): 224-230. doi: 10.1016/j.taap.2009.10.011
  • 20. Li N, Liu T, Zhou L, He J, Ye L. Di-(2-ethylhcxyl) phthalate reduces progesterone levels and induces apoptosis of ovarian granulosa cell in adult female ICR mice. Environmental Toxicology and Pharmacology 2012; 34 (3): 869-875. 10.1016/j. etap.2012.08.013
  • 21. Piche CD, Sauvageau D, Vanlian M, Erythropel HC, Robaire B et al. Effects of di-(2-ethylhexyl) phthalate and four of its metabolites on steroidogenesis in MA-10 cells. Ecotoxicology and Environmental Safety 2012; 79: 108-115. doi: 10.1016/j. ecoenv.2011.12.008
  • 22. Romani F, Tropea A, Scarinci E, Federico A, Russo CD et al. Endocrine disruptors and human reproductive failure: the in vitro effect of phthalates on human luteal cells. Fertility and Sterility 2014; 102 (3): 831-837. doi: 10.1016/j. fertnstert.2014.05.041
  • 23. Somasundaram D, Manokaran K, Selvanesan B, Bhaskaran R. Impact of di-(2-ethylhexyl) phthalate on the uterus of adult Wistar rats. Human and Experimental Toxicology 2017; 36 (6): 565-572. doi: 10.1177/0960327116657601
  • 24. Somasundaram DB, Selvanesan BC, Ramachandran I, Bhaskaran RS. Lactational exposure to di (2-ethylhexyl) phthalate impairs the ovarian and uterine function of adult offspring rat. Reproductive Sciences 2016; 23 (4): 549-559. doi: 10.1177/1933719115607995
  • 25. Kim JH, Kim SH, Oh YS, Ihm HJ, Chae HD et al. In vitro effects of phthalate esters in human myometrial and leiomyoma cells and increased urinary level of phthalate metabolite in women with uterine leiomyoma. Fertility and Sterility 2017; 107 (4): 1061-1069. e1061. doi: 10.1016/j.fertnstert.2017.01.015
  • 26. Chen FP, Chien MH, Chern IY. Impact of low concentrations of phthalates on the effects of 17beta-estradiol in MCF-7 breast cancer cells. Taiwanese Journal of Obstetrics & Gynecology 2016; 55 (6): 826-834. doi: 10.1016/j.tjog.2015.11.003
  • 27. Jin Q, Sun Z, Li Y. Estrogenic activities of di-2-ethylhexyl phthalate. Frontiers of Medicine in China 2008; 2 (3): 303-308. doi: 10.1007/s11684-008-0058-2
  • 28. Polat B, Acar DB, Macun HC, Korkmaz O, Çolak A et al. Effect of epidermal growth factor on in vitro maturation of cat oocytes recovered from ovaries at follicular and luteal stages. Kafkas Universitesi Veteriner Fakültesi Dergisi 2009; 15 (4): 623-627.
  • 29. Feldman EC, Nelson RW, Reusch C, Scott-Moncrieff JC. Feline reproduction. In: Feldman EC, Nelson RW (editors). Canine and Feline Endocrinology. 3rd ed. Philadelphia, PA, USA: Elsevier Health Sciences; 2004. pp. 45-60.
  • 30. Hamouzova P, Cizek P, Novotny R, Bartoskova A, Tichy F. Distribution of mast cells in the feline ovary in various phases of the oestrous cycle. Reproduction in Domestic Animals 2017; 52 (3): 483-486. doi: 10.1111/rda.12938
  • 31. Kabakci R, Macun HC, Polat IM, Yildirim E. Inhibitory effect of bisphenol A on in vitro feline uterine contractions. Animal Reproduction Science 2019; 205: 27-33. doi: 10.1016/j. anireprosci.2019.03.017
  • 32. Kabakçı R, Varışlı Ö, Kaya A, Baştan İ, Şimşek S. Effect of diethylhexyl phthalate on sperm motility parameters in bull. Veterinary Journal of Mehmet Akif Ersoy University 2019; 4 (2): 62-68. doi: 10.24880/maeuvfd.637406
  • 33. Erkekoglu P, Rachidi W, Yuzugullu OG, Giray B, Favier A et al. Evaluation of cytotoxicity and oxidative DNA damaging effects of di (2-ethylhexyl)-phthalate (DEHP) and mono (2-ethylhexyl)-phthalate (MEHP) on MA-10 leydig cells and protection by selenium. Toxicology and Applied Pharmacology 2010; 248 (1): 52-62. doi: 10.1016/j.taap.2010.07.016
  • 34. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS et al. Endocrine-disrupting chemicals: an endocrine society scientific statement. Endocrine Reviews 2009; 30 (4): 293-342. doi: 10.1210/er.2009-0002
  • 35. Bujnakova Mlynarcikova A, Scsukova S. Simultaneous effects of endocrine disruptor bisphenol A and flavonoid fisetin on progesterone production by granulosa cells. Environmental Toxicology and Pharmacology 2018; 59: 66-73. doi: 10.1016/j. etap.2018.03.001
  • 36. Yasemin Özatik F, Kaygısız B, Erol K, Dündar Y, Önkol T et al. The Effects of p-nonylphenol on the myometrial contractile activity. Drug Research 2015; 65 (7): 388-392. doi: 10.1055/s0034-1387717
  • 37. Murata T, Murata E, Liu C, Narita K, Honda K et al. Oxytocin receptor gene expression in rat uterus: regulation by ovarian steroids. Journal of Endocrinology 2000; 166 (1): 45-52.
  • 38. Clary ML, Cameron A, Craver BN. Influence of female hormones on motility of cat’s uterus and its responses to oxytocics. Proceedings of the Society for Experimental Biology and Medicine 1951; 77 (4): 778-783. doi: 10.3181/00379727- 77-18925
  • 39. Wang X, Shang L, Wang J, Wu N, Wang S. Effect of phthalate esters on the secretion of prostaglandins (F2α and E2) and oxytocin in cultured bovine ovarian and endometrial cells. Domestic Animal Endocrinology 2010; 39 (2): 131-136. doi: 10.1016/j.domaniend.2010.03.002
  • 40. Azevedo R, Oliveira N, Maia C, Verde I. Effects of di (2-etilhexil) phthalate on human umbilical artery. Chemosphere 2019; 228: 278-286. doi: 10.1016/j.chemosphere.2019.04.128
  • 41. Tavares IA, Bennett A, Gaffen JD, Morris HR, Taylor GW. The biological activities of phthalate esters on rat gastric muscle. European Journal of Pharmacology 1984; 106 (2): 449-452. doi: 10.1016/0014-2999(84)90738-6
  • 42. Al Otaibi M. The physiological mechanism of uterine contraction with emphasis on calcium ion. Calcium Signaling 2014; 1 (2): 101-119.
  • 43. Liu PS, Lin CM. Phthalates suppress the calcium signaling of nicotinic acetylcholine receptors in bovine adrenal chromaffin cells. Toxicology and Applied Pharmacology 2002; 183 (2): 92- 98. doi: 10.1006/taap.2002.9466
  • 44. Garfield RE, Maner WL. Physiology and electrical activity of uterine contractions. Seminars in Cell and Developmental Biology 2007; 18 (3): 289-295. doi: 10.1016/j. semcdb.2007.05.004
  • 45. Domino M, Pawlinski B, Gajewska M, Jasinski T, Sady M et al. Uterine EMG activity in the non-pregnant sow during estrous cycle. BMC Veterinary Research 2018; 14 (1): 176. doi: 10.1186/s12917-018-1495-z
  • 46. Noriega N, Howdeshell KL, Furr J, Lambright CR, Wilson VS et al. Pubertal administration of DEHP delays puberty, suppresses testosterone production and inhibits reproductive tract development in male Sprague-Dawley and Long-Evans rats. Toxicological Sciences 2009: 163-178. doi: 10.1093/toxsci/ kfp129
  • 47. Zakar T, Mesiano S. How does progesterone relax the uterus in pregnancy. New England Journal of Medicine 2011; 364 (10): 972-973.
  • 48. Gupta H, Deshpande SB. Bisphenol A decreases the spontaneous contractions of rat uterus in vitro through a nitrergic mechanism. Journal of Basic and Clinical Physiology and Pharmacology 2018. doi: 10.1515/jbcpp-2017-0068
  • 49. Salleh N, Giribabu N, Feng AOM, Myint K. Bisphenol A, dichlorodiphenyltrichloroethane (DDT) and vinclozolin affect ex-vivo uterine contraction in rats via uterotonin (prostaglandin F2α, acetylcholine and oxytocin) related pathways. International Journal of Medical Sciences 2015; 12 (11): 914. doi: 10.7150/ijms.11957
Turkish Journal of Veterinary and Animal Sciences-Cover
  • ISSN: 1300-0128
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Transcriptome sequencing analysis of ovarian granulosa cells in FecB hybrid ewe lamb

Cuiling WU, Chunxin WANG, Bo ZHA, Yunhui ZHAO, Zhuo ZHAO, Yuezhen TIAN, Kechuan TIAN, Mingxin ZHANG

An atypical localization of Bacillus anthracis in a cow’s milk and udder

Özgür ÇELEBİ, Fatih BÜYÜK, Mustafa Reha COŞKUN, Mitat ŞAHİN

The effects of hatching time and feed access time on chick quality, organ development, blood parameters, and intestinal morphology in broilers

Volkan İPEK, Arda SÖZCÜ, Aydın İPEK, Müjdat Müfit KAHRAMAN

Evaluation of larval culture and conventional PCR methods for the detection of Strongylus vulgaris in equines of Iran

Sara LARKI, Alireza ALBORZ, Abbas ZEINAL

Effect of breed on growth performance and carcass quality attributes of apparently healthy male weanling rabbits under a conventional housing system

Sahar SULEMAN, Shahid Ali KHAN, Muhammad Haris AZIZ

A phylogenetic analysis of Mycoplasma strains circulating in sheep pneumonia in the Kars region of Turkey

Salih OTLU, Olcay ÖZTÜRKLER

Assessment of genetic gain and its simulation for performance traits in Sahiwal cattle

Atish Kumar CHAKRAVARTY, Poonam RATWAN, Manoj KUMAR

Investigation of propolis in terms of hygienic quality, some pathogenic bacteria and Nosema spp

Hayrettin AKKAYA, Gülay Merve BAYRAKAL, Emek DÜMEN

Possible ensiling of pumpkin (Cucurbita pepo) residues

Mahmut KALİBER, Yusuf KONCA, Selma BÜYÜKKILIÇ BEYZİ, İsmail ÜLGER

Assessment of polymorphism on kappa-casein gene of Anatolian water buffalo breed using the PCR–RFLP method

Yusuf ÖZŞENSOY