Expression profiles of IGF-I, IGF-II, bFGF and TGF- $beta$2 growth factors during chicken embryonic development

Kanatlı embriyolarındaki çizgili kas gelişimi embriyona! myoblastların aktivasyonu, çoğalması, farklılaşması, ve füzyonuna bağlıdır. IGF-I, IGF-II, TGF-ß ve FGF gibi büyüme faktörleri bu proseslerle birlikte daha erken olan embriyo gelişimini düzenler. Bu büyüme faktörlerinin ayrı ayrı expresyonunu belirlemek için, ilk 6 günde (E O ile E 6 arası) embriyonun tamamından, 7. ve 8. günde (E 7 ve E 8) göğüs ve karın kısmından, 9-20. günlerde ise (E 9 ile E 20 arası) sadece göğüs kaslarından RNA'lar elde edildi. Daha sonra, büyüme faktörlerine ait cDNA'lar, Reverse-Transcription Polymerase Chain Reaction (RT-PCR) tekniği kullanılarak sentez edildi. TGF-ß2 haricindeki bütün büyüme faktörlerinin gen expresyonu en erken blastula aşamasında saptandı. IGF-I mRNA miktarı embriyonun birinci gününden itibaren azaldı ve 10'uncu güne kadar düşük seviyede kaldı. Diğer taraftan, genel IGF-II mRNA miktarı embriyonun 20'nci gününe kadar inişli çıkışli seyretti. Şöyleki, 16'ncı embriyonik güne kadar 1-5'nci günler arasındaki seviyenin yaklaşık olarak 1/3'üne geriledi. TGF-ß2 mRNA ilk olarak embriyonun 3'üncü gününde gözlendi ve miktarı küçük iniş çıkışlarla beraber embriyonun 18'inci gününe kadar yüksek kaldı. bFGF mRNA miktarı ise 3'üncü gününde arttı ve embriyonun 13'üncü gününe kadar küçük iniş çıkışlarla birlikte yüksek seyretti. Bu araştırmada gen expresyonu ile kas gelişimini düzenleyen mekanizmaların zamanlaması arasındaki uyuma paralel olarak, IGF-I, bFGF, TGF-ß2'nin tavukların embriyonik çizgili kas gelişiminde önemli bir düzenleyici olabileceği sonucuna varıldı.

Tavuk embriyolarının gelişim sürecinde, IGF-I, IGF-II, bFGF, ve TGF- $beta$ 2 büyüme faktörlerinin expresyon profili

Skeletal muscle development in avian embryos depends on the activation, proliferation, differentiation, and fusion of embryonic myoblasts. These processes as well as early embryonic development are mainly regulated by major growth factors such as IGF-I, IGF-II, TGF-ß and FGFs. In order to determine their differential expression, total RNA was isolated from whole embryos on each of the embryonal days (E) 0 to 6, from the thoracic/abdominal half of the embryo at E 7 and E 8, and from pectoralis muscle tissues at E 9 to E 20. Growth factor cDNAs were synthesized by reverse-transcription polymerase chain reaction (RT-PCR). All growth factor messages except TGF-ß2 were first detected as early as the blastula stage. IGF-I mRNA levels gradually declined on E 1 and remained lower through E 10. Levels then dramatically increased on E 11 (~ 3.5-fold) and remained high through E 13. On the other hand, overall the amount of IGF-II mRNA fluctuated from E 0 to E 20. Levels between E 0 and E 5 remained high and then declined (~ 3-fold) through E 16. TGF-ß2 mRNA first appeared on E 3 and then levels remained high with slight fluctuations until E 18. bFGF mRNA levels increased (~ 2.5-fold) on E 3 and remained high with slight fluctuations until E 13. Because of the correlation of gene expression with the timing of major myogenic events, we suggest that IGF-I, bFGF and TGF-ß2 are major regulators of embryonic skeletal muscle development in chickens.

___

  • Chevaliier, A.: Role of the somitic mesoderm in the development of the thorax in bird embryos. II. Origin of thoracic and appendicular musculature. J. Emb. Exp. Morp. 1979; 49: 73-78.
  • O'Neill, J.: Growth and differentiation during myogenesis in the chick embryo. Dev. Biol. 1987; 120: 465-480.
  • Girbau, M., Bassas, L, Alemany, J., dePablo F.: In situ autoradiography and ligand-dependent tyrosine kinase activity reveal insulin receptors and IGF-I receptors in prepancreatic chicken embryos. Proceedings of the National Academy of Sciences. 1989; 86(15): 5868-5872.
  • Duclos, M.J., Wilkie, R.S., Goddard, C. Stimulation of DNA synthesis in chicken muscle satellite cells by insulin and insulin-like growth factors: evidence for exclusive mediation by a type-1 insulin-like growth factor. J. Endocrinol. 1991; 128: 35-42.
  • Sanders, E.J., Hu, N., Wride, M.A.: Expression of TGF beta 1 /beta 3 during early chick embryo development. Anat. Rec. 1994; 238: 397-406.
  • Itoh, N., Mima, T., Mikawa, T.: Loss of fibroblast growth factor receptors is necessary for terminal differentiation of embryonic limb muscle. Development 1996; 122: 291-300.
  • Linkhart, T.A., Clegg, C.H., Hauschka, S.D.: Control of mouse myoblast commitment to terminal differentiation by mitogens. J. Supramol. Struct. 1980; 14: 483-498.
  • Stern, H.M., Hauschka, S.D.: Neural tube and notocord promote in vitro myogenesis in single somite explants. Dev. Biol. 1995; 167(1): 87-103.
  • Hamburger, V., Hamilton, H.L.: A series of normal stages in the development of the chick embryo. J. Morphol. 1951; 88: 49-92.
  • Chomczynski, P., Sacci, N.: Single step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal. Biochem.1987; 162: 156-159.
  • Borja, A.Z., Zeller, M.R., Meyers, C: Expression of alternatively spliced bFGF coding exons and antisense mRNAs during chicken embryogenesis. Dev. Biol. 1993; 157: 110-118.
  • Burt, D.W., Paton, I.R.: Molecular cloning and primary structure of the chicken transforming growth factor-beta 2 gene. DNA and Cell Biol. 1991; 10: 723-734.
  • Kajimoto, Y., Rotwein, P.S.: Structure and expression of a chicken insulin-like growth factor I precursor. Mol. Endocrinol. 1989; 3 (12): 1907-1913.
  • Darling, D.C., Brickell, P.M.: Nuçleotide sequence and genomic structure of the.chicken insulin-like growth factor-ll (IGF-II) coding region. Gen/Comp. Endocrinol. 1996; 102 (3): 283-287.
  • Yamamura. M., Uyemura, K., Deans, R.J., Weinberg, K., Rea, T.H., Bloom, B.R., Modlin, R.L.: Defining protective responses to pathogens: Cytokine profiles in lepropsy lesions. Science. 1991; 254: 277-279.
  • Feredette, B.J., Landmesser, L.T.: Relationship of primary and secondary myogenesis to fiber type development in embryonic chick development. Dev. Biol. 1991; 143: 1-18.
  • O'Neill, J.: Growth and differentiation during myogenesis in the chick embryo. Dev. Biol. 1987; 120: 465-480.
  • Stockdale, F.E., Nicovits, J.R.W., Christ, B.: Molecular and cellular biology of avian somite development. Dev. Dyn. 2000; 219(3): 304-321.
  • Kikuchi, K., Buonomo, F.C.C, Kajimato, Y., Rotwein, P.: Expression of insulin-like growth factor-l during chicken development. Endocrinology 1991; 128(3): 1323-1328.
  • Ludwig, T., Eggeschwiler, J., Fisher, P., D'Ercole, A.J., Davenport, Ml., Efstratiadis, A.: Mouse mutants lacking the type 2 IGF receptor are rescued from perinetal lethality in IGF2 and IGF1 r null background. Dev. Biol. 1996; 177: 517-535.
  • Mathews, LS, Hammer, R.E., Behringer, R.R., D'Ercole, A.J., Bell, G.I., Brinster, R.L., Palmiter, R.D.: Growth enhancement of transgenic mice expressing human insulin-like growth factor I. Endocrinology 1988; 123 (6): 2827-2833.
  • Florini, J.R., Magri, K.A., Ewton, D.Z., James, P.L., Grindstaff, K., Rotwein, P.: "Spontaneous" differentiation of skeletal myoblasts is dependent upon autocrine secretion of insulin-like growth factor-ll. J. Biol. Chem. 1991; 266: 15917-15923.
  • Schoenle, T.J., Mazuruk, K., Waldbilling, R.J., Potts, J., D.C., Chader, G.J., Rodriguez, I.R.: Cloning and characterization of a chick embryo cDNA and gene for IGFBP-2. J. Mol. Endocrinol. 1995; 15: 49-59.
  • Allender, S.V., Ehrenborg, E., Luhtman, H., Powell, D.R.: Conservation of IGFBP structure during evolution: Cloning of chicken insulin-like growth factor binding protein-5. Prog. Growth Factor Res. 1995:6: 159-165.
  • Lafyatis, R., Lechleider, R., Roberts, A.B., Sporn, M".B: Secretion and transcriptional regulation of the transforming growth factor-|33 gene during myogenesis. Mol. Cell. Biol. 1991; 11: 3795-3803.
  • Florini, J.R., Magri, K.A.: Assay of creatine kinase in microtiter plates using thio-NAD to allow monitoring at 405 nm. Analy. Biochem. 1989; 182: 399-404.
  • Moore, L.A., Arrizubieta, M.J/, Tidyman, W.E., Herman, LA. Bandman, E.: Analysis of the chicken fast myosin heavy chain family. Localization of isoform-speoific antibody epitopes and regions of divergence. J. Mol. Biol. 1992; 225: 1143-1151.
Turkish Journal of Veterinary and Animal Sciences-Cover
  • ISSN: 1300-0128
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

İskenderun Körfezi’nden Dil Balığı, Solea solea (L., 1758)’ n›n Baz› Populasyon Parametrelerinin İncelenmesi

Mustafa TÜRKMEN

Diagnostic Approach to the Prevalence of Feline Periodontal Disease

Erdoğan SAMSAR, Ömer BEŞALTI, Ahmet ÖZAK

The effect of genetic background on the in vitro development of mouse embryos in potassium simplex optimized medium supplemented with amino acids ($KSOM^{AA}$ )

Gazi TURGUT, Haydar BAĞIŞ, Hakan SAĞIRKAYA, Hande ODAMAN MERCAN, András DINNYÉS

Controlling the Breeding Season Using Melatonin and Progestagen in Kıvırcık Ewes

Huriye HOROZ, Güven KAŞIKÇI

The Microbiological Quality of Çiğ Köfte Sold in Ankara

Özlem KÜPLÜLÜ, Belgin SARIMEHMETOĞLU

Detection of Listeria monocytogenes in Faeces from Chickens, Sheep and Cattle in Elazığ Province

Hakan KALENDER

Comparison of fatty acid profiles of different tissues of mature trout (Salmo trutta labrax, Pallas, 1811) caught from Kazandere Creek in the Çoruh Region, Erzurum, Turkey

N. Mevlüt ARAS, Özer AYIK, H. İbrahim HALİLOĞLU, Hasan YETİM

Poorly Differentiated Pancreatic Carcinoma Associated with Partial Alopecia in a Cat

Yılmaz AYDIN

Pathological and Immunohistochemical Studies in Rabbits Experimentally Infected with Toxoplasma gondii

Rıfkı HAZIROĞLU

Çoruh Havzas› Kazandere Çay› Olgun Dere Alabal›klar› (Salmo turutta labraks, Pallas-1811)'nda Farkl› Dokular›n (Kas, Karaci¤er, Gonad, Adipoz) Ya¤ Asidi Kompozisyonlar›n›n Karfl›laflt›r›lmas›

N. Mevlüt ARAS, H. İbrahim HALİLOĞLU, Özer AYIK