Effects of supplementary nano-ZnO on in vitro ruminal fermentation, methane release, antioxidants, and microbial biomass

Effects of supplementary nano-ZnO on in vitro ruminal fermentation, methane release, antioxidants, and microbial biomass

The effects of nano-ZnO on in vitro ruminal fermentation, methane release, total antioxidant capacity (TAC), and microbialbiomass production (MBP) were assessed using an in vitro gas production technique. Treatments included a control diet and dietscontaining 20, 40, or 60 mg of supplemental Zn per kg dry matter (DM) as ZnO or nano-ZnO. As a result of this study, supplementationof 20 mg of Zn as nano-ZnO, similar to ZnO, decreased methane production and protozoa enumeration but improved (P < 0.05) TAC,MBP, digestibility and truly degraded substrate (TDS). As compared with the control treatment, adding the supplementary Zn had noeffect on partitioning factor, MBP efficiency, pH, and ammonia-N (P > 0.05). The diets containing 40 and 60 mg of supplementary Zn,as nano-ZnO or ZnO, had no advantage over the diet containing 20 mg of Zn in terms of methane decline and TAC, TDS, and MBPincrements. Overall, nano-ZnO had no adverse effect on in vitro ruminal fermentation. The addition of 20 mg of Zn as nano-ZnO perkg diet DM was enough to improve the in vitro ruminal fermentation in terms of methane release, TAC, and MBP. Thus, the highersupplementary Zn levels (40 and 60 mg/kg DM) are not recommended.

___

  • 1. Sarker NC, Keomanivong F, Borhan M, Rahman S, Swanson K. In vitro evaluation of nano zinc oxide (nZnO) on mitigation of gaseous emissions. Journal of Animal Science and Technology 2018; 60: 27. doi: 10.1186/s40781-018-0185-5
  • 2. Sarker NC, Borhan M, Fortuna AM, Rahman S. Understanding gaseous reduction in swine manure resulting from nanoparticle treatments under anaerobic storage conditions. Journal of Environmental Sciences 2019; 82 (1): 179-191. doi: 10.1016/j. jes.2019.03.005
  • 3. Wu G. Principles of Animal Nutrition. 1st ed. Boca Raton, FL, USA: Taylor & Francis Group; 2018.
  • 4. Abedini M, Shariatmadari F, Karimi Torshizi MA, Ahmadi H. Effects of zinc oxide nanoparticles on the egg quality, immune response, zinc retention, and blood parameters of laying hens in the late phase of production. Journal of Animal Physiology and Animal Nutrition 2018; 102 (3): 736-745. doi: 10.1111/ jpn.12871
  • 5. Mir SH, Mani V, Pal RP, Malik TA, Sharma H. Zinc in ruminants: metabolism and homeostasis. Proceedings of the National Academy of Sciences of India Section B: Biological Sciences 2018; 1 (1): 1-11. doi: 10.1007/s40011-018-1048-z
  • 6. Prasad AS. Zinc: An antioxidant and anti-inflammatory agent: Role of zinc in degenerative disorders of aging. Journal of Trace Elements in Medicine and Biology 2014; 28 (4): 364-371. doi: 10.1016/j.jtemb.2014.07.019
  • 7. Swain PS, Rao SBN, Rajendran D, Dominic G, Selvaraju S. Nano zinc, an alternative to conventional zinc as animal feed supplement: a review. Animal Nutrition 2016; 2 (3): 134-141. doi: 10.1016/j.aninu.2016.06.003
  • 8. Jarosz M, Olbert M, Wyszogrodzka G, Młyniec K, Librowski T. Antioxidant and anti-inflammatory effects of zinc. Zincdependent NF-κB signaling. Inflammopharmacology 2017; 25 (1): 11-24. doi: 10.1007/s10787-017-0309-4
  • 9. Li MZ, Huang JT, Tsai YH, Mao SY, Fu CM et al. Nanosize of zinc oxide and the effects on zinc digestibility, growth performances, immune response and serum parameters of weanling piglets. Animal Science Journal 2016; 87 (11): 1379- 1385. doi: 10.1111/asj.12579
  • 10. Mielcarz-Skalska L, Smolińska B. Zinc and nano-ZnO – influence on living organisms. Biotechnology and Food Science 2017; 81 (2): 93-102.
  • 11. Abuelo A, Hernández J, Benedito JL, Castillo C. The importance of the oxidative status of dairy cattle in the periparturient period: revisiting antioxidant supplementation. Journal of Animal Physiology and Animal Nutrition 2015; 99 (6): 1003- 1016. doi: 10.1111/jpn.12273
  • 12. Wang C, Zhang L, Su W, Ying Z, He J et al. Zinc oxide nanoparticles as a substitute for zinc oxide or colistin sulfate: effects on growth, serum enzymes, zinc deposition, intestinal morphology and epithelial barrier in weaned piglets. PLoS One 2017; 12 (7): e0181136.
  • 13. Alimohamady R, Aliarabi H, Bruckmaier RM, Christensen RG. Effect of different sources of supplemental zinc on performance, nutrient digestibility, and antioxidant enzyme activities in lambs. Biological Trace Element Research 2019; 189 (1): 75-84. doi: 10.1007/s12011-018-1448-1
  • 14. Adegbeye MJ, Elghandour MM, Barbabosa-Pliego A, Monroy JC, Mellado M et al. Nanoparticles in equine nutrition: mechanism of action and application as feed additives. Journal of Equine Veterinary Science 2019; 78 (1): 29-37. doi: 10.1016/j.jevs.2019.04.001
  • 15. Raje K, Ojha S, Mishra A, Munde VK, Rawat C et al. Impact of supplementation of mineral nano particles on growth performance and health status of animals: a review. Journal of Entomology and Zoology Studies 2018; 6 (3): 1690-1694.
  • 16. Tatli Seven P, Seven I, Gul Baykalir B, Iflazoglu Mutlu S, Salem AZ. Nanotechnology and nano-propolis in animal production and health: an overview. Italian Journal of Animal Science 2018; 17 (4): 921-930. doi: 10.1080/1828051X.2018.1448726
  • 17. Pandurangan M, Veerappan M, Kim DH. Cytotoxicity of zinc oxide nanoparticles on antioxidant enzyme activities and mRNA expression in the cocultured C2C12 and 3T3-L1 cells. Applied Biochemistry and Biotechnology 2015; 175 (3): 1270- 1280. doi: 10.1007/s12010-014-1351-y
  • 18. Jacobsen NR, Stoeger T, Van Den Brûle S, Saber AT, Beyerle A et al. Acute and subacute pulmonary toxicity and mortality in mice after intratracheal instillation of ZnO nanoparticles in three laboratories. Food and Chemical Toxicology 2015; 85 (1): 84-95. doi: 10.1016/j.fct.2015.08.008
  • 19. Yan X, Rong R, Zhu S, Guo M, Gao S et al. Effects of ZnO nanoparticles on dimethoate-induced toxicity in mice. Journal of Agricultural and Food Chemistry 2015; 63 (37): 8292-8298. doi: 10.1021/acs.jafc.5b01979
  • 20. Gopi M, Pearlin B, Kumar RD, Shanmathy M, Prabakar G. Role of nanoparticles in animal and poultry nutrition: modes of action and applications in formulating feed additives and food processing. International Journal of Pharmacology 2017; 13 (7): 724-731. doi: 10.3923/ijp.2017.724.731
  • 21. El Sabry MI, McMillin KW, Sabliov CM. Nanotechnology considerations for poultry and livestock production systems: a review. Annals of Animal Science 2018; 18 (2): 319-334. doi: 10.1515/aoas-2017-0047
  • 22. Singh KK, Maity SB, Maity A. Effect of nano zinc oxide on zinc bioavailability and blood biochemical changes in preruminant lambs. Indian Journal of Animal Sciences 2018; 88 (7): 805-807.
  • 23. Faisal S, Yusuf Hafeez F, Zafar Y, Majeed S, Leng X et al. A review on nanoparticles as boon for biogas producers—nano fuels and biosensing monitoring. Applied Sciences 2019; 9 (1): 59. doi: 10.3390/app9010059
  • 24. NRC. Nutrient Requirements of Small Ruminants. Washington, DC, USA: National Research Council, National Academic Press; 2007.
  • 25. AOAC. Official Methods of Analysis of AOAC International. 17th ed. Gaithersburg, MD, USA: AOAC; 2002.
  • 26. Menke KH, Raab L, Salewski A, Steingass H, Fritz D et al. The estimation of the digestibility and metabolizable energy content of ruminant feedstuffs from the gas production when they are incubated with rumen liquor in vitro. Journal of Agricultural Science 1979; 93 (1): 217-222. doi: 10.1017/ S0021859600086305
  • 27. FASS. Guide for the Care and Use of Agricultural Animals in Research and Teaching. 3rd ed. Champaign, IL, USA: Federation of Animal Science Societies; 2010.
  • 28. Sarmadi B, Rouzbehan Y, Rezaei J. Influences of growth stage and nitrogen fertilizer on chemical composition, phenolics, in situ degradability and in vitro ruminal variables in amaranth forage. Animal Feed Science and Technology 2016; 215 (1): 73- 84. doi: 10.1016/j.anifeedsci.2016.03.007
  • 29. Blümmel M, Steingss H, Becker K. The relationship between in vitro gas production, in vitro microbial biomass yield and 15N incorporation and its implications for the prediction of voluntary feed intake of roughages. British Journal of Nutrition 1997; 77 (6): 911-921. doi: 10.1079/BJN19970089
  • 30. Makkar HP. Recent advances in the in vitro gas method for evaluation of nutritional quality of feed resources. Assessing quality and safety of animal feeds. FAO Animal Production and Health Series 2004; 160 (1): 55-88.
  • 31. Fievez V, Babayemi OJ, Demeyer D. Estimation of direct and indirect gas production in syringes: a tool to estimate short chain fatty acid production that requires minimal laboratory facilities. Animal Feed Science and Technology 2005; 123-124 (1): 197-210. doi: 10.1016/j.anifeedsci.2005.05.001
  • 32. Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Analytical Biochemistry 1996; 239 (1): 70-76. doi: 10.1006/ abio.1996.0292
  • 33. Galyean ML. Laboratory Procedures in Animal Nutrition Research. Lubbock, TX, USA: Department of Animal and Food Science, Texas Tech University; 2010.
  • 34. Dehority BA. Rumen Microbiology. 1st ed. Nottingham, UK: Nottingham University Press; 2003.
  • 35. Blümmel M, Karsli A, Russell JR. Influence of diet on growth yields of rumen micro-organisms in vitro and in vivo: influence on growth yield of variable carbon fluxes to fermentation products. British Journal of Nutrition 2003; 90 (3): 625-634. doi: 10.1079/BJN2003934
  • 36. SAS Institute. SAS/STAT User’s Guide. Version 9.1. Cary, NC, USA: SAS Institute; 2004.
  • 37. Newbold CJ, De La Fuente G, Belanche A, Ramos-Morales E, McEwan NR. The role of ciliate protozoa in the rumen. Frontiers in Microbiology 2015; 6 (1): 1313. doi: 10.3389/ fmicb.2015.01313
  • 38. McAllister TA, Newbold CJ. Redirecting rumen fermentation to reduce methanogenesis. Australian Journal of Experimental Agriculture 2008; 48 (2): 7-13. doi: 10.1071/EA07218
  • 39. Morgavi DP, Forano E, Martin C, Newbold CJ. Microbial ecosystem and methanogenesis in ruminants. Animal 2010; 4 (7): 1024-1036. doi: 10.1017/S1751731110000546
  • 40. Eryavuz A, Dehority BA. Effects of supplemental zinc concentration on cellulose digestion and cellulolytic and total bacterial numbers in vitro. Animal Feed Science and Technology 2009; 151 (3-4): 175-183. doi: 10.1016/j. anifeedsci.2009.01.008
  • 41. Sharma V, Shukla RK, Saxena N, Parmar D, Das M et al. DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicology Letters 2009; 185 (3): 211-218. doi: 10.1016/j.toxlet.2009.01.008
  • 42. Bąkowski M, Kiczorowska B, Samolińska W, Klebaniuk R. Silver and zinc nanoparticles in animal nutrition–a review. Annals of Animal Science 2018; 18 (4): 879-898. doi: 10.2478/ aoas-2018-0029
  • 43. Suresh D, Nethravathi PC, Rajanaika H, Nagabhushana H, Sharma SC. Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Materials Science in Semiconductor Processing 2015; 31 (1): 446-454. doi: 10.1016/j.mssp.2014.12.023
  • 44. Mohamed AH, Mohamed MY, Ibrahim K, Abd-El-Ghany FTF, Mahgoup AAS. Impact of nano-zinc oxide supplementation on productive performance and some biochemical parameters of ewes and offspring. Egyptian Journal of Sheep and Goat Sciences 2017; 12 (3): 49-64.
  • 45. Salem AZM, Ammar H, Lopez S, Gohar YM, Gonzalez JS. Sensitivity of ruminal bacteria isolates of sheep, cattle and buffalo to some heavy metals. Animal Feed Science and Technology 2010; 163 (2): 143-149. doi: 10.1016/j. anifeedsci.2010.10.017
  • 46. Vázquez-Armijo JF, Martinez-Tinajero JJ, Lopez D, Salem AZM, Rojo R. In vitro gas production and dry matter degradability of diets consumed by goats with or without copper and zinc supplementation. Biological Trace Element Research 2011; 144 (1-3): 580-587. doi: 10.1007/s12011-011- 9113-y
  • 47. Kumar SSR. Green synthesis of nanoparticles using plant extracts and their effect on rumen fermentation in vitro. MSc, PV Narasimha Rao Telangana Veterinary University, Rajendranagar, India, 2017.
  • 48. Yousef N, Mawad A, Abeed A. Enhancement the cellulase activity induced by endophytic bacteria using calcium nanoparticles. Current Microbiology 2019; 76 (3): 346-354. doi: 10.1007/s00284-018-1614-x
  • 49. McDonald P, Edwards RA, Greenhalgh JFD, Morgan CA, Sinclair LA et al. Animal Nutrition. 7th ed. Essex, UK: Prentice Hall; 2011.
  • 50. Arelovich HM, Amela MI, Martínez MF, Bravo RD, Torrea MB. Influence of different sources of zinc and protein supplementation on digestion and rumen fermentation parameters in sheep consuming low-quality hay. Small Ruminant Research 2014; 121 (2–3): 175-182. doi: 10.1016/j. smallrumres.2014.08.005
  • 51. Suttle N. Mineral Nutrition of Livestock. 4th ed. Wallingford, UK: CAB International; 2010.
  • 52. Owens FN, Basalan M. Ruminal fermentation. In: Millen D, De Beni Arrigoni M, Lauritano Pacheco R (editors). Rumenology. 1st ed. Basel, Switzerland: Springer; 2016. pp. 63-102.
  • 53. Rojas LX, McDowell LR, Martin FG, Wilkinson NS, Johnson AB et al. Relative bioavailability of zinc methionine and two inorganic zinc sources fed to cattle. Journal of Trace Elements in Medicine and Biology 1996; 10 (4): 205-264. doi: 10.1016/ S0946-672X(96)80036-8
  • 54. Swain PS, Rao SBN, Rajendran D, Soren NM, Pal DT et al. Effect of supplementation of nano zinc on rumen fermentation and fiber degradability in goats. Animal Nutrition and Feed Technology 2018; 18 (3): 297-309. doi: 10.5958/0974- 181X.2018.00028.8
  • 55. Mortimer M, Kasemets K, Kahru A. Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology 2010; 269 (2-3): 182-189. doi: 10.1016/j. tox.2009.07.007