Study of the φ-generalized type k-fractional integrals or derivatives and some of their properties

Study of the φ-generalized type k-fractional integrals or derivatives and some of their properties

A novel fractional integral in the sense of Riemann-Liouville integral and two new fractional derivatives in the sense of Riemann-Liouville derivative and Caputo derivative with respect to another function and two parameters are introduced. Some significant properties of them are presented like semigroup property, inverse property, etc. The solution of the Cauchy-type problem for the nonhomogenous linear differential equation with the φ-generalized Caputo $k$-fractional derivative is given by using the method of successive approximation.

___

  • [1] Almeida R. A Caputo fractional derivative of a function with respect to another function. Communications in Nonlinear Science 2017; 44: 460-481.
  • [2] Almeida R, Malinowska AB, Monteiro MTT. Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications. Mathematical Methods in the Applied Sciences 2018; 41 (1): 336-352.
  • [3] Azam MK, Farid G, Rehman MA. Study of generalized type K -fractional derivatives. Advances in Difference Equations 2017; 249: 1-12. doi: 10.1186/s13662-017-1311-2.
  • [4] Caputo M. Linear models of dissipation whose q is almost frequency independent-ii. Geophysical Journal of the Royal Astronomical Society 1967; 13 (5): 529-539.
  • [5] Cerutti RA. The k -fractional logistic equation with $k$ -Caputo derivative. Pure Mathematical Sciences 2015; 4 (1): 9-15.
  • [6] Diaz R, Pariguan E. On hypergeometric functions and Pochhammer $k$-symbol. Divulgaciones Matemáticas 2007; 15 (2): 179-192.
  • [7] Farid G, Habibullah GM. An extension of Hadamard fractional integral. International Journal of Mathematical Analysis 2015; 9 (10): 471-482.
  • [8] Gambo YY, Jarad F, Baleanu D, Abdeljawad T. On Caputo modification of the Hadamard fractional derivatives. Advances in Difference Equations 2014; 10: 1-12. doi: 10. 1186/1687-1847-2014-10.
  • [9] Grünwald AK. Über “begrenzte derivationen und deren anwendung. Zeitschrift für angewandte Mathematik und Physik 1867; 12: 441-480 (in German).
  • [10] Hadamard J. Essai sur letude des fonctions donnees par leur developpement de Taylor. Journal des Mathematiques Pures et Appliquees 1892; 8 (4): 101-186 (in French).
  • [11] Jarad F, Abdeljawad T, Baleanu D. Caputo-type modification of the hadamard fractional derivatives.Advances in Difference Equations 2012; 142: 1-8. doi: 10.1186/ 1687- 1847- 2012- 142
  • [12] Katugampola UN. A new approach to generalized fractional derivatives. Bulletin of Mathematical Analysis and Applications 2014; 6 (4): 1-15.
  • [13] Kilbas AA, Srivastava HM, Trujillo JJ. Theory and applications of fractional differential equations. North-Holland mathematics studies, 204. Amsterdam: Elsevier Science BV; 2006.
  • [14] Kobelev VV. The variant of post-Newtonian mechanics with generalized fractional derivatives. Chaos: An Interdisciplinary Journal of Nonlinear Science 2006; 043117: 1-16. doi: 10.1063/1.2384864
  • [15] Luchko Y, Trujillo JJ. Caputo-type modification of the erdélyi–kober fractional derivative. Fractional Calculus and Applied Analysis 2007; 10 (3): 249-67.
  • [16] Machado JT, Kiryakova V, Mainardi F. Recent history of fractional calculus. Communications in Nonlinear Science and Numerical Simulation 2011; 16 (3): 1140-1153.
  • [17] Miller KS, Ross B. An introduction to the fractional calculus and fractional differential equations. John Wiley & Sons, New York, NY, USA, 1993.
  • [18] Mittag-Leffler GM. Sur la nouvelle fonction $E_α(x)$. Comptes rendus de l’Académie des Sciences 1903; 137: 554558 (in French).
  • [19] Oliveira De EC, Machado JAT. A Review of Definitions for Fractional Derivatives and Integral. Mathematical Problems in Engineering 2014; 238459: 1-6. http://dx.doi.org/10.1155/2014/238459
  • [20] Riemann B. Versuch Einer Allgemeinen Auffassung der Integration und Differentiation. GesammelteMathematischeWerke und Wissenschaftlicher Nachlass. Teubner, Leipzig, 1876, Dover, New York, NY, USA, 1953 (in German).
  • [21] Riesz M. L’intégrale de Riemann-Liouville et le probléme de Cauchy. Acta Mathematica 1949; 81 (1): 1-222 (in French).
  • [22] Riesz M. L’intégrale de Riemann-Liouville et le probléme de Cauchy pour l’équation des ondes. Acta Mathematica 1939; 67: 153-170 (in French).
  • [23] Romero LG, Luque LL, Dorrego GA, Cerutti RA. On the$k$-Riemann-Liouville fractional derivative. International Journal of Contemporary Mathematical Sciences 2013; 8 (1): 41-51.
  • [24] Romero LG, Luque LL. $k$-Weyl fractional derivative, integral and integral transform. International Journal of Contemporary Mathematical Sciences 2013; 8 (6): 263-270.
  • [25] Samko SG, Kilbas AA, Marichev OI. Fractional integrals and derivatives, translated from the 1987 Russian original. Yverdon: Gordon and Breach; 1993.
  • [26] Sarikaya MZ, Dahmani Z, Kiris ME, Ahmad F. (k, s)-Riemann-Liouville fractional integral and applications. Hacettepe Journal of Mathematics and Statistics 2016; 45 (1): 1-13.
  • [27] Weyl H. Bemerkungen zum begriff des differentialquotienten gebrochener ordung vierteljahresschr. Naturforschende Gesellschaft in Zürich 1917; 62: 296-302 (in German).
  • [28] Wiman A. Ueber den Fundamentalsatz in der Theorie der Funkilionen Eα(x). Acta Mathematica 1905; 29: 191-201 (in German).