Representation variety of free or surface groups and Reidemeister torsion

Representation variety of free or surface groups and Reidemeister torsion

For G ∈ {GL(n, mathbb{C}), SL(n, mathbb{C})} , we consider G−valued representations of free or surface group with genus > 1. We establish a formula for computing Reidemeister torsion of such representations in terms of Atiyah-Bott-Goldman symplectic form for G. Furthermore, we apply the obtained results to hyperbolic 3-manifolds.

___

  • [1] Akbulut S, McCarthy J. Casson’s invariant for oriented homology 3-spheres: an exposition, Mathematical Notes. Princeton University Press, 2014.
  • [2] Boden HU, Curtis CL. Splicing and the SL2(C) Casson invariant. Proceedings of the American Mathematical Society 2008; 136: 2615-2623.
  • [3] Boyer S, Nicas A. Varieties of group representations and Casson’s invariant for rational homology 3-spheres. Transactions of the American Mathematical Society 1990; 322: 507-522.
  • [4] Bullock D. Rings of SL2(C)-characters and the Kauffman bracket skein module. Commentarii Mathematici Helvetici 1997; 72: 521-542.
  • [5] Burger M, Iozzi A, Wienhard A. Surface group representations with maximal Toledo invariant. Annals of Mathematics 2010; 172: 517-566.
  • [6] Cheeger J. Analytic torsion and the heat equation. Annals of Mathematics 1979; 109: 259-321.
  • [7] Choi S, Goldman WM. Convex real projective structures on closed surfaces are closed. Proceedings of the American Mathematical Society, 1993; 118: 657-661.
  • [8] Culler M, Shalen PB. Varieties of group representations and splittings of 3-manifolds. Annals of Mathematics 1983; 117: 109-146.
  • [9] Franz W. Uber die Torsion einer Uberdeckung. Journal fur die Reine und Angewandte Mathematik 1935; 173: 245-254.
  • [10] Frohman C, Gelca R. Skein modules and the noncommutative torus. Transactions of the American Mathematical Society 2000; 352: 4877-4888.
  • [11] Garcia-Prada O, Gothen PB, Mundet i Riera I. Higgs bundles and surface group representations in the real symplectic group. Journal of Topology 2013; 6: 64-118.
  • [12] Gelca R. On the relation between the A-polynomial and the Jones polynomial. Proceedings of the American Mathematical Society 2002; 130: 1235-1241.
  • [13] Goldman WM. The symplectic nature of fundamental groups of surfaces. Advances in Mathematics 1984; 54: 200- 225.
  • [14] Goldman WM. Geometric structures on manifolds and varieties of representations. The Geometry of Group Representations. Contemporary Mathematics 1988; 169-198.
  • [15] Gukov S. Three-dimensional quantum gravity, Chern-Simons theory, and the A-polynomial. Communications in Mathematical Physics 2005; 255: 577-627.
  • [16] Guichard O, Wienhard A. Topological Invariants of Anosov Representations. Journal of Topology 2010; 3: 578-642.
  • [17] Heusener M, Porti J. Deformations of reducible representations of 3-manifold groups into PSL(2,C). Algebraic Geometric Topology 2005; 5: 965-997.
  • [18] Hezenci F, Sozen Y. A note on exceptional groups and Reidemeister torsion. Journal of Mathematical Physics 2018; 59: 081704.
  • [19] Hezenci F. Representation varieties of free or surface group and Reidemeister torsion. PhD thesis, Hacettepe University 2019.
  • [20] Hitchin NJ. The self-duality equations on a Riemann surface. Proceedings of the London Mathematical Society 1987; 55: 59-126.
  • [21] Hitchin N. Lie groups and Teichmuller spaces. Topology 1992; 31: 449-473.
  • [22] Hoffman K, Kunze R. Linear Algebra. PHI; 2nd edition, 2009.
  • [23] Hutchings M, Lee Y. Circle valued Morse theory and Reidemeister torsion. Geometry Topology 1999; 3: 369-396.
  • [24] Labourie F. Anasov flows, surface groups and curves in projective space. Inventiones Mathematicae 2006; 165: 51-114.
  • [25] Le TQ. The colored Jones polynomial and the A-polynomial of knots. Advances in Mathematics 2006; 207: 782-804.
  • [26] Meinrenken E. Witten’s formulas for intersection pairings on moduli spaces of flat G-bundles. Advances in Mathematics 2005; 197: 140-197.
  • [27] Meng G, Taubes CH. SW = Milnor torsion. Mathematical Research Letters 1996; 3: 661-674.
  • [28] Milnor J. Two complexes which are homeomorphic but combinatorially distinct. Annals of Mathematics 1961; 74: 575-590.
  • [29] Milnor J. A duality theorem for Reidemeister torsion. Annals of Mathematics 1962; 76: 137-147.
  • [30] Milnor J. Whitehead torsion. American Mathematical Society 1966; 72: 358-426.
  • [31] Morgan JW, Shalen PB. Valuations, trees, and degenerations of hyperbolic structures, I. Annals of Mathematics 1984; 120: 401-476.
  • [32] Motegi K. Haken manifolds and representations of their fundamental groups in SL(2,C). Topology and its Applications 1988; 29: 207-212.
  • [33] Muller W. Analytic torsion and R-torsion of Riemannian manifolds. Advances in Mathematics 1978; 28: 233-305.
  • [34] Porti J. Torsion de Reidemeister pour les Varietes Hyperboliques. Amer Mathematical Society, 1997.
  • [35] Ray D, Singer I. R-torsion and the Laplacian of Riemannian manifolds. Advances in Mathematics 1971; 7: 145–210.
  • [36] Reidemeister K. Homotopieringe und linsenraume. AAbhandlungen aus dem Mathematischen Seminar der Universität Hamburg 1935; 11: 102-109.
  • [37] Schwarz A. The partition function of degenerate quadratic functional and Ray-Singer torsion. Letters in Mathematical Physics 1978; 2: 247-252.
  • [38] Sikora AS. Skein theory for SU(n)-quantum invariants. Algebraic Geometric Topology 2005; 5: 865-897.
  • [39] Sikora AS. Character Varieties. Transactions of the American Mathematical Society 2012; 364: 5173-5208.
  • [40] Simpson C. Moduli of representations of the fundamental group of a smooth projective variety I. Publications Mathematiques. Institut de Hautes Etudes Scientifiques 1994; 79: 47-129.
  • [41] Sozen Y. On Reidemeister torsion of a symplectic complex. Osaka Journal of Mathematics 2008; 45: 1-39.
  • [42] Sozen Y. Symplectic chain complex and Reidemeister torsion of compact manifolds. Mathematica Scandinavica 2012; 111: 65-91.
  • [43] Sozen Y. On a volume element of a Hitchin component. Fundamenta Mathematicae 2012; 217: 249-264.
  • [44] Sozen Y. A note on Reidemeister torsion and pleated surfaces. Journal of Knot Theory and its Ramifications 2014; 23: 1-32.
  • [45] Turaev V. Torsions of 3-Dimensional Manifolds. Birkhauser, Basel, 2002.
  • [46] Weitsman J. Quantization via real polarization of the moduli space of flat connections and Chern-Simons gauge theory in genus 1. Communications in Mathematical Physics 1991; 137: 175-190.
  • [47] Witten E. Quantum field theory and the Jones polynomial. Communications in Mathematical Physics 1989; 121: 351-399.
  • [48] Witten E. On quantum gauge theories in two dimensions. Communications in Mathematical Physics 1991; 141: 153-209.