A simple and constructive proof to a generalization of Lüroth’s theorem

A simple and constructive proof to a generalization of Lüroth’s theorem

A generalization of Lüroth’s theorem expresses that every transcendence degree 1 subfield of the rational function field is a simple extension. In this note we show that a classical proof of this theorem also holds to prove this generalization.

___

  • [1] Igusa J. On a theorem of Lüroth. Memoirs of the College of Science, University of Kioto 1951; (26): 251-253.
  • [2] Lüroth J. Beweis eines Satzes über rationale Curven. Mathematische Annalen 1876; (9): 163-165 (in German).
  • [3] Ollivier F. Le problème d’identifiabilité structurelle globale : approche théorique, méthodes effectives et bornes de complexité. Thèse de doctorat en science, École polytechnique, 1991 (in French).
  • [4] Ollivier F. Standard bases of differential ideals. Lecture Notes in Computer Science 1990; 508: 304-321.
  • [5] Ritt JF. Differential Algebra. American Mathematical Society. USA: New York, 1950.
  • [6] Samuel P. Some Remarks on Lüroth’s Theorem. Memoirs of the College of Science, University of Kioto 1953; (27): 223-224.
  • [7] Van Der Waerden BL. Modern Algebra. Volueme I, Frederic Ungar Publishing Company, 1931.