Some properties of C-fusion frames

In [10], we generalized the concept of fusion frames, namely, c-fusion frames, which is a continuous version of the fusion frames. In this article we give some important properties about the generalization, namely erasures of subspaces, the bound of c-erasure reconstruction error for Parseval c-fusion frames, perturbation of c-fusion frames and the frame operator for fusion pair.

Some properties of C-fusion frames

In [10], we generalized the concept of fusion frames, namely, c-fusion frames, which is a continuous version of the fusion frames. In this article we give some important properties about the generalization, namely erasures of subspaces, the bound of c-erasure reconstruction error for Parseval c-fusion frames, perturbation of c-fusion frames and the frame operator for fusion pair.

___

  • [1] Benedetto, J., Powell A. and Yilmaz, O.: Sigma-Delta quantization and finite frames, IEEE Trans. Inform. Th. 52, 1990-2005 (2006).
  • [2] Bolcskel, H., Hlawatsch F. and Feichyinger H. G.: Frame-Theoretic analysis of oversampled filter bank, IEEE Trans. Signal Processing. 46, 12, 3256- 3268 (1998).
  • [3] Candes, E. J. and Donoho, D. L.: New tight frames of curvelets and optimal representation of objects with piecwise C2 singularities, Comm. Pure and App. Math. 56, 216-266 (2004).
  • [4] Casazza, P. G. and Kutyniok, G.: Frame of subspaces, Wavelets, Frames and Operator Theory (College Park, MD, 2003), 87-113, Contemp. Math. 345, Amer. Math. Soc., Providence, RI, (2004).
  • [5] Casazza, P. G., Kutyniok, G. and Li, S.: Fusion frames and Distributed Processing, Appl. Comput. Harmon. Anal. 25, 114-132 (2008).
  • [6] Casazza, P.G. and KOva ˆc evi ´c , J.: Equal-norm tight frames with erasures, Adv. Comput. Math. 18, 387-430 (2003).
  • [7] Christensen, O.: Introduction to frames and Riesz bases, Boston, Birkhauser 2003.
  • [8] Daubechies, I., Grossmann, A. and Meyer, Y.: painless nonorthogonal Expansions, J. Math. Phys. 27, 1271-1283 (1986).
  • [9] Duffin, R.J. and Schaeffer, A.C.: A class of nonharmonik Fourier series, Trans. Amer. Math. Soc. 72, 341-366 (1952).
  • [10] Faroughi, M. H. and Ahmadi, R.: Fusion integral, J. Mathematische Nachrichten. to appear. [11] Gabardo, J. P. and Han, D.: frames associated with measurable space, Adv. comp. Math. 18, 127-147 (2003).
  • [12] Hassibi, B., Hochwald, B., Shokrollahi, A. and Sweldens, W.: Representation theory for high-rate multiple-antenna code design, IEEE Trans. Inform. Theory. 47, 2335-2367 (2001).
  • [13] Pedersen, and Gert, K.: Analysis Now, New York, Springer-Verlag 1995.
  • [14] Rahimi, A., Najati, A. and Dehgan, Y. N.: Continuous frame in Hilbert space, Methods of Functional Analysis and Topology. 12, 170-182 (2006).
  • [15] Rahimi, A., Najati, A. and Faroughi, M. H.: Continuous and discrete frames of subspaces in Hilbert spaces, Southeast Asian Bulletinof Mathematics. 32, 305-324 (2008).
  • [16] Rudin, W.: Functional Analysis, New York, Tata Mc Graw-Hill Editions 1973.
  • [17] Rudin, W.: Real and Complex Analysis, New York, Tata Mc Graw-Hill Editions 1987.
  • [18] Sakai, S.: C∗ -Algebras and W∗ -Algebras, New York, Springer-Verlag 1998.