Rotating periodic integrable solutions for second-order differential systems with nonresonance condition

Rotating periodic integrable solutions for second-order differential systems with nonresonance condition

In this paper, by using Parseval’s formula and Schauder’s fixed point theorem, we prove the existence and uniqueness of rotating periodic integrable solution of the second-order system x ′′ + f(t, x) = 0 with x(t + T) = Qx(t) and ∫ kT (k−1)T x(s)ds = 0, k ∈ Z + for any orthogonal matrix Q when the nonlinearity f satisfies nonresonance condition.

___

  • [1] Clifford MJ, Bishop SR. Rotating periodic orbits of the parametrically excited pendulum. Physics Letters A 1995; 201: 191-196. doi: 10.1017/S0334270000010687
  • [2] Hua HT, Cong FZ, Cheng Y. Existence and uniqueness of solutions for periodic-integrable boundary value problem of second order differential equation. Boundary Value Problems 2012; 89 (2012): 1-8. doi: 10.3934/dcds.2016.36.643
  • [3] Hua HT, Cong FZ, Cheng Y. Notes on existence and uniqueness of solutions for second order periodic-integrable boundary value problems. Applied Mathematics Letters 2012; 25 (12): 2423-2428. doi: 10.1016/j.aml.2012.05.002
  • [4] Chang XJ, Li Y. Rotating periodic silution of second order disspative dynamical systems. Discrete and Continuous Dynamical Systems 2016; 36: 643-652. doi: 10.3934/dcds.2016.36.643
  • [5] Chang XJ, Li Y. Rotating periodic solutions for second-order dynamical systems with singularities of repulsive type. Mathematical Methods in the Applied Sciences 2016; 40 (8): 3092-3099. doi: 10.1002/m-ma.4223
  • [6] Feng X, Cong FZ. Existence and uniqueness of solutions for the second order periodic integrable boundary value problem. Boundary Value Problem 2017; 109: 1-13. doi: 10.1186/s13661-017-0840-7
  • [7] Hu XJ, Wang PH. Conditional Fredholm determinant for the S-periodic orbits in Hamilonian systems. Journal of Functional Analysis 2011; 261 (11): 3247-3278. doi: 10.1016/j.jfa.2011.07.025
  • [8] Hu XJ, Ou YW, Wang PH. Trace formula for Linear Hamiltonian systems with its applications to elliptic Lagrangian solutions. Archive for Rational Mechanics and Analysis 2015; 216 (1): 313-357. doi: 10.1007/s00205-014-0810-5
  • [9] Lazer AC. Application of a lemma on bilinear forms to a problem in nonlinear oscillations. Proceedings of the American Mathematical Society 1972; 33 (1): 89-94. doi: 10.2307/2038176
  • [10] Liu GG, Li Y, Yang X. Rotating periodic solutions for asymptotically linear second-order Hamiltonian systems with resonance at infinity. Mathematical Methods in the Applied Sciences 2017; 40 (18): 7139-7150. doi: 10.1002/mma.4518
  • [11] Liu GG, Li Y, Yang X. Existence and multiplicity of rotating periodic solutions for resonant Hamiltonian systems. Journal of Differential Equations 2018; 265 (4): 1324-1352. doi: 10.1016/j.jde.2018.04.001
  • [12] Liu GG, Li Y, Yang X. Rotating periodic solutions for superlinear second order Hamiltonian systems. Applied Mathematics Letters 2018; 79: 73-79. doi: 10.1016/j.aml.2017.11.024
  • [13] Liu GG, Li Y, Yang X. Infinitely many rotating periodic solutions for second-order Hamiltonian systems. Journal of Dynamical and Control Systems 2019; 25 (2): 159-174. doi: 10.1007/s10883-018-9402-2
  • [14] Li J, Chang XJ, Li Y. Rotating periodic solutions for second order systems with Hartman-type nonlinearity. Boundary Value Problems 2018; 37: 1-11. doi: 10.1186/s13661-018-0955-5