An extension of maximum principle with some applications
An extension of maximum principle with some applications
Let U ⊆ R n (res. D ⊂ R n ) be an open (res. a compact) subset, and let L be an elliptic operator defined on C 2 (U, R) (res. C 2 (D, R) ). In the present paper, we are going to extend the maximum principle for the function f ∈ C 2 (U, R) (res. f ∈ C 2 (D, R) ) satisfying the equation Lf = ε, where ε is a real everywhere nonzero continuous function on U (res. D). Finally, we obtain some applications in mathematics and physics.
___
- [1] Al-Refai M, Luchko Y. Analysis of fractional diffusion equations of distributed order: Maximum principles and their applications. Analysis 2016; 36 (2): 123-133. doi: 10.1515/anly-2015-5011
- [2] Al-Refai M, Luchko Y. Maximum principles for the fractional diffusion equations with the Riemann-Liouville fractional derivative and their applications. Fractional Calculus & Applied Analysis 2014; 17 (2): 483-498. doi: 10.2478/s13540-014-0181-5
- [3] Al-Refai M, Luchko Y. Maximum principle for the multi-term time-fractional diffusion equations with the Riemann-Liouville fractional derivatives. Applied Mathematics and Computation 2015; 257: 40-51. doi: 10.1016/j.amc.2014.12.127
- [4] Alsaedi A, Ahmad B, Kirane M. Maximum principle for certain generalized time and space fractional diffusion equations. Quarterly of Applied Mathematics 2015; 73: 163-175. doi: 10.1090/S0033-569X-2015-01386-2
- [5] Bahaa GM. Optimal control problem and maximum principle for fractional order cooperative systems. Kybernetika Praha 2019; 55 (2): 337-358. doi: 10.14736/kyb-2019-2-0337
- [6] Boccardo L, Orsina L. Strong maximum principle for some quasilinear Dirichlet problems having natural growth terms. Advanced Nonlinear Studies 2020; 20 (2): 503-510. doi: 10.1515/ans-2020-2088
- [7] Borikhanov M, Kirane M, Torebek BT. Maximum principle and its application for the nonlinear time-fractional diffusion equations with Cauchy-Dirichlet conditions. Applied Mathematics Letters 2018; 81: 14-20. doi: 10.1016/j.aml.2018.01.012
- [8] Brown JW, Churchill RV. Complex Variables and Applications. 8th ed. Boston, MA, USA: McGraw- Hill, 2004.
- [9] Cao L, Kong H, Zeng SD. Maximum principles for time-fractional Caputo-Katugampola diffusion equations. Journal of Nonlinear Sciences and Applications 2017; 10: 2257-2267. doi: 10.22436/jnsa.010.04.75
- [10] Chan CY, Liu HT. A maximum principle for fractional diffusion differential equations. Quaterly of Applied Mathematics 2016; 74: 421-427. doi: 10.1090/qam/1433
- [11] Chen W, Li C. Maximum principles for the fractional p-Laplacian and symmetry of solutions. Advances in Mathematics 2018; 335: 735-758. doi: 10.1016/j.aim.2018.07.016
- [12] Corrêa FJSA, Souto MAS. On maximum principles cooperative elliptic systems via fixed point index. Nonlinear Analysis: Theory, Methods & Applications 1996; 26 (5): 997-1006. doi: 10.1016/0362-546X(94)00214-2
- [13] De Figueiredo DG, Mitidieri E. A maximum principle for an elliptic system and applications to semilinear problem. SIAM Journal on Mathematical Analysis 1986; 17 (4): 836-849. doi: 10.1137/0517060
- [14] De Figueriedo DG, Mitidieri E. Maximum principles for cooperative elliptic systems. Comptes Rendus de l’Académie des Sciences (Série I) 1990; 310 (2): 49-52.
- [15] De Figueiredo DG. Selected Papers. Switzerland: Springer International Publishing, 2013, pp. 291-321.
- [16] Dowling PN. Extensions of the maximum principle for vector valued analytic and harmonic functions. Journal of Mathematical Analysis and Applications 1995; 190 (2): 599-604. doi: 10.1006/jmaa.1995.1095
- [17] Dowling PN. The maximum principle for Banach space valued harmonic functions. Journal of Mathematical Analysis and Applications 1993; 173 (1): 255-257. doi: 10.1006/jmaa.1993.1064
- [18] Enache C. Maximum principles and symmetry results for a class of fully nonlinear elliptic PDEs. Nonlinear Differential Equations and Applications 2010; 17: 591-600. doi: 10.1007/s00030-010-0070-5
- [19] Fleckinger J, Hernández J, De Thélin F. On maximum principles and existence of positive solutions for some cooperative elliptic systems. Differential and Integral Equations 1995; 8 (1): 69-85.
- [20] Haffman K, Kunze R. Linear Algebra. 2nd ed. New Delhi, India: Prentice Hall of India, 1984.
- [21] Halliday D, Walker J, Resnik R. Fundamentals of Physics. 10th ed. Hoboken, NJ, USA: John Wiely & Sons, Inc., 2014.
- [22] Khafagy SA. Maximum principle and existence of weak solutions for nonlinear systems involving different degenerated p-Laplacian operators on R n . New Zealand Journal of Mathematics 2009; 39: 151-163.
- [23] Kirane M, Torebek BT. Extremum principle for the Hadamard derivatives and its application to nonlinear fractional partial differential equations. Fractional Calculus & Applied Analysis 2019; 22 (2): 358-378. doi: 10.1515/fca-2019- 0022
- [24] Kochubei A, Luchko Y. Handbook of fractional calculus with applications. In: Machado JAT (editor). Fractional Differential Equations, Vol. 2. Berlin, Germany: Walter De Gruyter, 2019.
- [25] Lang S. Complex Analysis. 4th ed. New York, NY, USA: Springer Verlag Inc., 1999.
- [26] Lin SYT, Lin YF. Set Theory with Applications. 2nd ed. USA: Mancorp Publishing Inc., 1985.
- [27] Luchko Y, Yamamoto M. General time-fractional diffusion equation: Some uniqueness and existence results for the initial-boundary-value problems. Fractional Calculus & Applied Analysis 2016; 19 (3): 676-695. doi: 10.1515/fca2016-0036
- [28] Luchko Y, Yamamoto M. On the maximum principle for a time-fractional diffusion equation. Fractional Calculus & Applied Analysis 2017; 20 (5): 1131-1145. doi: 10.1515/fca-2017-0060
- [29] Ponnusamy S, Silverman H. Complex Variables with Applications. Basel, Switzerland: Birkhäuser Verlag AG, 2006.
- [30] Rudin W. Principles of Mathematical Analysis. 3rd ed. New York, NY, USA: McGraw-Hill Inc., 1976.
- [31] Serag HM, El-Zahrani EA. Maximum principle and existence of positive solutions for nonlinear systems on R n . Electronic Journal of Differential Equations 2005; 85: 1-12.
- [32] Serag HM, Khafagy SA. On maximum principle and existence of positive weak solutions for n × n nonlinear elliptic systems involving degenerated p-Laplacian operators. Turkish Journal of Mathematics 2010; 34: 59-71. doi: 10.3906/mat-0707-8
- [33] Serag HM, Qamlo AH. Maximum principle and existence of solutions for non necessarily cooperative systems involving Schrödinger operators. Miskolc Mathematical Notes 2009; 10 (2): 207-221. doi: 10.18514/MMN.209.145
- [34] Shengda Z, Stanislaw M, Van Thein N, Yunri B. Maximum principles for a class of generalized time-fractional diffusion equations. Fractional Calculus & Applied Analysis 2020; 23 (3): 822-836. doi: 10.1515/fca-2020-0041
- [35] Taha HA. Operation Research: An Introduction. 8th ed. Upper Saddle River, NJ, USA: Person Prentice Hall, 2007.
- [36] Thorp E, Whitley A. The strong maximum modulous theorem for analytic functions into a Banach space. Proceedings of the American Mathematical Society 1967; 18: 640-646. doi: 10.1090/S0002-9939-1967-0214794-2
- [37] Ye H, Liu F, Anh V, Turner I. Maximum principle and numerical method for the multi-term time-space Riesz-Caputo fractional differential equations. Applied Mathematics and Computation 2014; 227: 531-540. doi: 10.1016/j.amc.2013.11.015
- [38] Zhenhai L, Shengda Z, Yunru B. Maximum principles for multi-term space-time variable-order fractional diffusion equations and their applications. Fractional Calculus & Applied Analysis 2016; 19 (1): 188-211. doi: 10.1515/fca2016-0011