Hilbert series of tangent cones for Gorenstein monomial curves in A 4 (K)

Hilbert series of tangent cones for Gorenstein monomial curves in A 4 (K)

In this paper, we study the Hilbert series of the tangent cone of Gorenstein monomial curves in the 4- dimensional affine space. We give an explicit formula for the reduced Hilbert series of the tangent cone of a noncomplete intersection Gorenstein monomial curve whose tangent cone is Cohen–Macaulay.

___

  • [1] Arslan F, Katsabekis A, Nalbandiyan M. On the Cohen-Macaulayness of tangent cones of monomial curves in A 4 (K). Turkish Journal of Mathematics 2019; 43: 1425-1446.
  • [2] Arslan F, Mete P. Hilbert functions of Gorenstein monomial curves. Proceedings of the American Mathematical Society 2007; 135: 1993-2002.
  • [3] Bayer D, Stillman M. Computation of Hilbert functions. Journal of Symbolic Computation 1992; 14: 31-50.
  • [4] Bresinsky H. Symmetric semigroups of integers generated by 4 elements. Manuscripta Mathematica 1975; 17 (3): 205-219.
  • [5] Greuel G-M, Pfister G. A Singular Introduction to Commutative Algebra. Berlin, Germany: Springer-Verlag, 2002.
  • [6] Kunz E. The value semigroup of one dimensional Gorenstein ring. Proceedings of the American Mathematical Society 1970; 25: 748-751.
  • [7] Sturmfels B. Gröbner Bases and Convex Polytopes. University Lecture Series Vol. 8. Providence, RI, USA: American Mathematical Society, 1996.