Good components of curves in projective spaces outside the Brill–Noether range

Good components of curves in projective spaces outside the Brill–Noether range

For all integers n, d, g such that n ≥ 4, d ≥ n + 1, and (n + 2)(d − n − 1) ≥ n(g − 1), we define a good (i.e. generically smooth of dimension (n + 1)d + (3 − n)(g − 1) and with the expected number of moduli) irreducible component A(d, g; n) of the Hilbert scheme of smooth and nondegenerate curves in P n with degree d and genus g . For most of these (d, g), we prove that a general X ∈ A(d, g; n) has maximal rank. We cover, in this way, a range of (d, g, n) outside the Brill–Noether range.

___

  • [1] Atanasov A. Interpolation and vector bundles on curves. arXiv:1404.4892.
  • [2] Atanasov A, Larson E, Yang D. Interpolation for normal bundles of general curves. Memoirs of the American Mathematical Society 2019; 257 (1234).
  • [3] Atiyah M. Vector bundles over an elliptic curve. Proceedings of the London Mathematical Society 1957; 7: 414-452.
  • [4] Ballico E, Ellia P. On postulation of curves in P 4 . Mathematische Zeitschrift 1985; 188: 215-223.
  • [5] Ballico E, Ellia P. The maximal rank conjecture for nonspecial curves in P 3 . 1985; Inventiones Mathematicae 79: 541-555.
  • [6] Ballico E, Ellia P. Beyond the maximal rank conjecture for curves in P 3 . In: Space Curves, Proceedings Rocca di Papa, Berlin, Germany: Lecture Notes in Math. 1266, Springer, 1985, pp. 1-23.
  • [7] Ballico E, Ellia P. On the postulation of many disjoint rational curves in PN , N ≥ 4. Bollettino U.M.I. 1985; 4-B: 585-599.
  • [8] Ballico E, Ellia P. The maximal rank conjecture for nonspecial curves in P n . Mathematische Zeitschrift 196 (1987), 355-367.
  • [9] Ballico E, Ellia P. Bonnes petites composantes des schémas de Hilbert de courbes lisses de P n . Comptes Rendus de l Académie des Sciences - Series I - Mathematics 1988; 306 (4): 187-190 (in French).
  • [10] Ballico E, Ellia P. On the existence of curves in P n with maximal rank. Journal für die Reine und Angewandte Mathematik 1989; 397: 1-22.
  • [11] Ballico E, Migliore J. Smooth curves whose hyperplane section is a given sets of points. Communications Algebra 1990; 18: 3015-3040.
  • [12] Choi Y, Iliev H, Park S. Components of the Hilbert scheme of smooth projective curves using ruled surfaces. arXiv:1807.05137.
  • [13] Ellingsrud G, Hirschowitz A. Sur le fibré normal des courbes gauches. Comptes Rendus de l Académie des Sciences - Series I - Mathematics 1984; 299 (7): 245-248 (in French).
  • [14] Fløystad G. Construction of space curves with good properties. Mathematische Annalen 1991; 289 (1): 33-54.
  • [15] Fløystad G. On space curves with good cohomological properties. Mathematische Annalen 1991; 291 (3): 505-549.
  • [16] Hartshorne R, Hirschowitz A. Smoothing algebraic space curves. In: Algebraic Geometry, Sitges 1983, Berlin, Germany: Lecture Notes in Mathematics 1124, Springer, 1985. pp. 98-131.
  • [17] Hartshorne R, Hirschowitz A. Courbes rationnelles et droites en position générale. Annales de l’Institu Fourier (1985); 25: 39-58 (in French).
  • [18] Hirschowitz A. Sur la postulation générique des courbes rationnelles. Acta Mathematica 1981; 146: 209-230 (in French).
  • [19] Kleiman SL. The transversality of a general translate. Compositio Mathematica 1974; 28: 3287-297.
  • [20] Larson E. The maximal rank conjecture for sections of curves. arxiv:1208.2730.
  • [21] Larson E. Interpolation for restricted tangent bundles of general curves. Algebra Number Theory 2016; 10 (4): 931-938.
  • [22] Larson E. Constructing reducible Brill–Noether curves. arxiv:1603.02301.
  • [23] Larson E. The generality of a section of a curve. arxiv:1605.06185.
  • [24] Larson E. Interpolation with bounded error. arxiv:1711.01729.
  • [25] Larson E. Constructing reducible Brill–Noether curves II. arxiv:1711.02752.
  • [26] Larson E. The maximal rank conjecture. arxiv:1711.04906.
  • [27] Larson E. Degenerations of curves in projective space and the maximal rank conjecture. arXiv:1809.05980.
  • [28] Larson E, Vogt I. Interpolation for Brill–Noether curve in P 4 . arxiv:1708.00028.
  • [29] Perrin D. Courbes passant par m points généraux de P 3 . Bulletin de la Société Mathématique de France, Mémoire 1985; 28/29 (in French).
  • [30] Sernesi E. On the existence of certain families of curves. Inventiones Mathematicae 1984; 75 (1): 25-57.
  • [31] Vogt I. Interpolation for Brill–Noether space curves. Manuscripta Mathematica 2018; 156: 137-147.