On a differential sequence in geometry

Yüksek mertebeli bağlantılarda yerel düzlük, büküm, burulma ve basitlik arasındaki bazı ilişkileri gösteren sağin bir çizelge inşa ediliyor. Kullanılan formüller $varepsilon$bağlantılarının Christoffel sembolleri cinsinden ifade ediliyorlar.

Geometride diferansiyel bir çizelge üzerine

We construct an exact differential sequence which indicates certain relations between curvature, local flatness, torsion and simplicity of higher order connections. Our formulas are expressed explicity in terms of the Christoffel symbols of dual $varepsilon$ -connections.

___

  • de Leon, M., Epstein, M.: Material bodies of higher grade, C. R. Acad. Sci. Paris, 319, Serie I, p. 615-620, 1994.
  • Ehresmann, C.: Sur les connexions d’ordre superieur, atti del U° Congresso del Unione Mat. Ital. 1956, p. 326.
  • Elzanowski, M., Prishepionok, S.: Connections on higher order frame bundles, preprint.
  • Guillemin, V.: The integrability problem for G-structures, Trans. A.M. S., 116, 1965, 544- 560.
  • Kolar, I.: On some operations with connections, Math. Nachrichten, 69, 1975, 297-306. Libermann, P.: Connexions d’ordre superieur et tenseurs de structure, Atti del Convegno Internazionale di Geometria Differenziale, Bologna, 1967.
  • Ortaçgil, E.: On a differential concomitant, 1986, unpublished.
  • Ortaçgil, E.: On a sequence of differential operators acting on c-connections of ehresmann, 1990, unpublished.
  • Ortaçgil, E.: Some ramarks on the Christoffel symbols of Ehresmann c -connections, Ex- tracta Mathematicae, to appear.
  • Pommaret, J. F.: Lie Pseudogroups and Mechanics, Gordon & Breach, 1988.
  • Spencer, D. C., Kumpera, A.: Lie Epuations, General Theory, Annals of Mathematics Studies, Princeton, NJ., 1972.
  • Yuen, P. C.: Sur les prolongoments de G-structures, Thèse, Paris, 1970.
  • Yuen, P. C.: Higher order frames and linear connections Chaiers de Topologie et Geometrie Diff. 13(3), 1971, 333-370.