Higher cohomologies for presheaves of commutative monoids

Higher cohomologies for presheaves of commutative monoids

We present an extension of the classical Eilenberg–MacLane higher order cohomology theories of abelian groups to presheaves of commutative monoids (and of abelian groups, then) over an arbitrary small category. These high-level cohomologies enjoy many desirable properties and the paper aims to explore them. The results apply directly in several settings such as presheaves of commutative monoids on a topological space, simplicial commutative monoids, presheaves of simplicial commutative monoids on a topological space, commutative monoids or simplicial commutative monoids on which a fixed monoid or group acts, and so forth. As a main application, we state and prove a precise cohomological classification both for braided and symmetric monoidal fibred categories whose fibres are abelian groupoids. The paper also includes a classification for extensions of commutative group coextensions of presheaves of commutative monoids, which is relevant to the study of H-coextensions of presheaves of commutative regular monoids

___

  • [1] Aldrovandi E, Noohi B. Butterflies I; Morphisms of 2-group stacks, Advances in Mathematics 2009; 221: 687-773
  • [2] Baues H-J, Jibladze M. Classification of abelian track categories. K-Theory 2002; 25 no. 3: 299-311.
  • [3] Baues H-J, Wirsching G. Cohomology of small categories. Journal of Pure and Applied Algebra 1985; 38: 187-211.
  • [4] Blanc D, Johnson MW, Turner JM. Local-to-global spectral sequences for the cohomology of diagrams. Journal of Pure and Applied Algebra 2009; 213: 34-53.
  • [5] Bousfield AK, Kan DM. Homotopy limits, completions and localizations. Lecture Notes in Mathematics 304. Springer-Verlag, Berlin-New York, 1972.
  • [6] Breen L. On the classification of 2-gerbes and 2-stacks. Astérisque No. 225, 1994.
  • [7] Breen L. Monoidal categories and multiextensions. Compositio Mathematica 1999; 117 no. 3: 295-335.
  • [8] Calvo M, Cegarra AM, Quang NT. Higher cohomologies of modules. Algebraic and Geometric Topology 2012; 12 no. 1: 343-413.
  • [9] Calvo M, Cegarra A.M. Higher cohomologies of commutative monoids. Journal of Pure and Applied Algebra 2019; 223 no. 1: 131-174.
  • [10] Carrasco P, Cegarra A.M. Cohomology of presheaves of monoids, Mathematics 2020; 8(1) no. 116: 1-35.
  • [11] Cegarra AM, Khmaladze E. Homotopy classification of graded Picard categories. Advances in Mathematics 2007; 213 no. 2: 644-686.
  • [12] Cegarra AM, Khmaladze E. Homotopy classification of braided graded categorical groups. Journal of Pure and Applied Algebra 2007; 209 no. 2, 411-437.
  • [13] Deligne P. La formule de dualité globale, Exposé XVIII of Théorie des Topos et Cohomologie Etale des Schémas (SGA 4). In: Lecture Notes in Math. 305. Springer, Berlin, 1973.
  • [14] Dwyer W.G, Kan DM. An obstruction theory for diagrams of simplicial sets. Nederlandse Akademie Wetenschappen. Indagationes Mathematicae 1984; 46: 139-146.
  • [15] Dwyer WG, Kan DM. Hochschild-Mitchell cohomology of simplicial categories and the cohomology of simplicial diagrams of simplicial sets. Nederlandse Akademie Wetenschappen. Indagationes Mathematicae 1988; 50: 111-120.
  • [16] Eilenberg S, Mac Lane S. Cohomology theory of Abelian groups and homotopy theory. I, II,III. Proceedings of the National Academy of Sciences U.S.A. 1950, 1951; 36: 443-447; 37: 657-663; 51: 307-310.
  • [17] Eilenberg S, Mac Lane S. On the groups H(Π, n) . I. Annals of Mathematics 1953; 58 (2): 55-106.
  • [18] Gabriel P, Zisman M. Calculus of fractions and homotopy theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35 Springer-Verlag New York, Inc., New York 1967.
  • [19] Gerstenhaber M, Schack SD. On the deformation of algebra morphisms and diagrams. Transactions of the American Mathematical Society 1983; 279: 1-50.
  • [20] Gerstenhaber M, Schack SD. The cohomology of presheaves of algebras. I. Presheaves over a partially ordered set. Trans. Am. Math. Soc. 310 (1988): 135-165.
  • [21] Gerstenhaber M, Giaquinto A, Schack SD. Diagrams of Lie algebras. Journal of Pure and Applied Algebra 2005; 196: 169-184.
  • [22] Grillet PA. Commutative Semigroups. Advances in Mathematics, Kluwer Academic Publisher, Philip Drive Norwell, 2001
  • [23] Grothendieck A. Catégories fibrées et déscente, Exp. VI, from: “Séminaire de Géométrie Algébrique du Bois Marie 1960-1961 (SGA 1)”. In Lecture Notes in Math. 224, Springer, Berlin; 1971 pp. 145-194.
  • [24] Joyal A, Street R. Braided tensor categories. Advances in Mathematics 1993; 102 no. 1: 20-78.
  • [25] Leech J. H-coextensions of monoids. Memoirs of the American Mathematical Society 1975; 1 issue 2, no. 157: 1-66.
  • [26] Mac Lane S. Homology. Reprint of the 1975 edition. Classics in Mathematics. Springer-Verlag, Berlin, 1995.
  • [27] Mac Lane S. Categories for the working mathematician. Second edition. Graduate Texts in Mathematics, 5. Springer- Verlag, New York, 1998.
  • [28] Moerdijk I, Svensson J-A. The equivariant Serre spectral sequence. Proceedings of the American Mathematical Society 1993; 118: 263-278.
  • [29] Moerdijk I, Svensson J-A. A Shapiro lemma for diagrams of spaces with applications to equivariant topology. Compositio Mathematica 1995; 96 no. 3: 249-282.
  • [30] Saavedra N. Catégories Tannakiennes. Lecture Notes in Math. 265. Springer-Verlag, Berlin-New York, 1972.
  • [31] Roos J-E. Sur les foncteurs dérivés de l←im−. Applications. Comptes Rendus de l’Académie des Sciences -Series IMathematics 1961; 252: 3702-3704.
  • [32] Thomason RW. Homotopy colimits in the category of small categories. Mathematical Proceedings of the Cambridge Philosopical Society 1979; 85 no. 1: 91-109.
  • [33] Watts Ch E. A homology theory for small categories. In Proceedings Conf. Categorical Algebra (La Jolla, Calif.,1965). Springer, New York, 1966, pp. 331-335. .