Geodesics of fiberwise cigar soliton deformation of the Sasaki metric

Geodesics of fiberwise cigar soliton deformation of the Sasaki metric

Ricci solitons arose in proof the Poincare conjecture by R. Hamilton and G. Perelman. The first example of a noncompact steady Ricci soliton on a plane was found by R. Hamilton. This two-dimensional manifold is conformally equivalent to the plane and it is called by R. Hamilton’s cigar soliton. The cigar soliton metric can be considered as a fiber-wise conformal deformation of the Euclidean metric on a fiber of the tangent bundle. In the paper we propose a deformation of the classical Sasaki metric on the tangent bundle of an n-dimensional Riemannian manifold that induces the cigar soliton type metric on the fibers. The purpose of the research is to study geodesics of the cigar soliton deformation of the Sasaki metric on the tangent bundle of the Riemannian manifold with focus on the locally symmetric/constant curvature base manifold.

___

  • [1] Abbassi MTK, Sarih M. On Riemannian g-natural metrics of the form ags + bgh + cgv on the Tangent Bundle of a Riemannian Manifold (M, g). Mediterranean Journal of Mathematics 2005; 2 (1): 19-43. doi: 10.1007/s00009-005- 0028-8
  • [2] Cao HD. Recent progress on Ricci solitons. Advanced Lectures in Mathematics 2010; 11: 1-38.
  • [3] Chen BY. A survey on Ricci solitons on Riemannian submanifolds. Contemporary Mathematics 2016; 674: 27-39. doi: 10.1090/conm/674/13552
  • [4] Derdzinski A. Solitony Ricciego. Wiadomości Matematyczne 2012; 48 (1): 1-32.
  • [5] Dombrowski P. On the geometry of the tangent bundle. Journal für die reine und angewandte Mathematik 1962; 210: 73-88.
  • [6] Hamilton R. The Ricci flow on surfaces. Contemporary Mathematics 1988; 71: 237-261.
  • [7] Kowalski O. Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold. Journal für die reine und angewandte Mathematik 1971; 250: 124-129.
  • [8] Musso E, Tricerri F. Riemannian metrics on tangent bundles. Annali di Matematica Pura ed Applicata 1988; 150 (4): 1-20.
  • [9] Nagy PT.Geodesics on the tangent sphere bundle of a Riemannian manifold. Geometriae Dedicata 1978; 7 (2): 233-244.
  • [10] Sasaki S. On the differential geometry of tangent bundles of Riemannian manifolds II. Tokyo Journal of Mathematics 1962; 14 (2): 146-155.
  • [11] Sato K. Geodesics on the tangent bundles over space forms. Tensor, N. S. 1978; 32: 5-10.
  • [12] Yampolsky A, Saharova E. Powers of the space form curvature operator and geodesics of the tangent bundle. Ukrainian Mathematical Journal 2004; 56 (9): 1231-1243.
  • [13] Sekizawa M. Curvatures of Tangent Bundles with Cheeger-Gromoll Metric. Tokyo Journal of Mathematics 1991; 14 (2): 407-417.
  • [14] Yampolsky A. On geodesics of tangent bundle with fiberwise deformed Sasaki metric over Kahlerian manifold. Journal of Mathematical Physics, Analysis, Geometry 2012; 8 (2): 177-189.
  • [15] Zagane A, Djaa M. Geometry of Mus-Sasaki metric. Communications in Mathematics 2018; 26 (2): 113-126. doi: 10.2478/cm-2018-0008
  • [16] Zagane A, Djaa M. On Geodesic of Warped Sasaki Metric. Mathematical Sciences and Applications E-Notes 2017; 5 (1): 85-92. doi: 10.36753/mathenot.421709